Geometry.Net - the online learning center
Home  - Scientists - Carcavi Pierre De

e99.com Bookstore
  
Images 
Newsgroups
Page 5     81-94 of 94    Back | 1  | 2  | 3  | 4  | 5 
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Carcavi Pierre De:     more detail

81. Science/fermats Last Theorem
pierre de Fermat (16011665) was a lawyer and amateur mathematician. to his correspondents he formulated the case n=3 in a letter to carcavi in 1659
http://www.urbanlegends.com/science/fermats_last_theorem.html
The AFU and Urban Legend Archive
Science

fermats last theorem Select a topic Home Searches AFU FAQ AFU Animals Books Celebrities Classic Collegiate Death Disney Drugs Food GIF Language Legal Medical Misc Movies Politics Products Religion Science Sex Songs TV Other sites
Newsgroups: sci.math
From: alopez-o@neumann.uwaterloo.ca (Alex Lopez-Ortiz)
Subject: sci.math FAQ: Fermat's Last Theorem
Date: Fri, 19 Apr 1996 00:12:05 GMT
FERMAT'S LAST THEOREM History of Fermat's Last Theorem Pierre de Fermat (1601-1665) was a lawyer and amateur mathematician. In about 1637, he annotated his copy (now lost) of Bachet's translation of Diophantus' Arithmetika with the following statement: Cubem autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem nominis fas est dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caparet. In English, and using modern terminology, the paragraph above reads as: Fermat never published a proof of this statement. It became to be known as Fermat's Last Theorem (FLT) not because it was his last piece of work, but because it is the last remaining statement in the post-humous list of Fermat's works that needed to be proven or independently verified. All others have either been shown to be true or disproven long ago.

82. Sur Quelques Pratiques De L'information Mathématique. Catherine Goldstein
pierre ont été descartes,les Pascal, Roberval, Frenicle de Bessy, Fermat, carcavi, etc., jusqu
http://www.info.unicaen.fr/bnum/jelec/Solaris/d04/4goldstein.html
Catherine GOLDSTEIN
F-91405 Orsay Cedex France
Catherine.Goldstein@math.u-psud.fr

Abstract I explore in this paper the relationship between mathematics and the practices of information in two ways. First, I illustrate by some examples how mathematics has forged special tools to store and classify information for various fields of knowledge, and I explain some reciprocal consequences for any examination, in the long term, of the functioning of the mathematical documentation itself. I then concentrate on the modern and contemporary Western world and sketch briefly the evolution of some of the means used to register, exchange and diffuse mathematical results.
  • 2.1 Deux exemples
4 Quelques questions
  • Introduction
    e
    • Deux exemples
    2.1 Deux exemples
    Sulbasutras
  • Dix classiques Les Dix classiques comme pour certains des Dix Classiques e
  • Sphaera Summa de arithmetica geometria proportioni et proportionalita de Luca Pacioli parue en 1494 Rechnung auf der Linien und Federn , d'Adam Riese, entre 1522 et 1600. e editio princeps des a priori
    e e e e e Une autre innovation est l'apparition des premiers journaux scientifiques, le
  • 83. VEDA
    Toulouse. Jeho úrad mu dovoloval zmenit jméno z pierre Fermat na pierrede Fermat. carcavim. carcavi byl také právníkem v Toulouse.
    http://pes.eunet.cz/veda/clanky/12982_0_0_0.html
    NEVIDITELNÝ PES EUROPE'S ZVÍØETNÍK BYDLENÍ ... ENCYKLOPEDIE
    Úterý 12.6.2001
    Svátek má Antonie
    Biologie a pøíroda

    Vesmír

    Fyzika

    Medicína
    ...

    Archiv vydání
    Nadpis Autor Text èlánku
    Alena Marešová Neviditelný pes již pøed èasem uveøejnil dotazník paní doktorky Marešové z Institutu pro kriminologii a sociální prevenci v Praze, týkající se extremismu. Nyní vás znovu prosí o pomoc. Institut pro kriminologii a sociální prevenci se t.è. zabývá trestnou èinností policistù - jejími pøíèinami, nezbytnými podmínkami její existence a možnostmi její redukce. Dílèím úkolem je zjištìní, jak v souèasnosti policii a policisty vnímá veøejnost a odborná veøejnost. Ze zkušených pracovníkù justice a policie byl vytvoøen soubor expertù, jejichž názory budou zpracovány a interpretovány zvl᚝ .Vzhledem k vynikajícím zkušenostem ze sbìru názorù prostøednictvím dotazníkù pøedložených internetové èásti veøejnosti, také v tomto pøípadì jsem zpracovala krátký dotazník a prosím uživatele internetu o jeho vyplnìní.
    Pro zájemce uvádím program
    43. semináøe Spoleènosti pro talent a nadání - ECHA:

    84. Christiaan Huygens1629
    societies. At these societies he met many mathematicians including Roberval,carcavi, Pascal, pierre Petit, Desargues and Sorbière.
    http://www.cmi.k12.il.us/~beuschlo/ha.html
    Christiaan Huygens
    H I S T O R Y O F P H Y S I C Christiaan Huygens was born and raised in a highly intellectual family and was a highly placed in Dutch political life. His father was a well-known man as a diplomat, poet, etc.
    Christiaan Huygens was born on April 14, 1629, at The Hague, Netherlands. At a young age he got the finest education available. Every one of his teachers was a highly intelligent, brilliant person. Private teachers tutored him at home until the age of 16; there he learned geometry, how to make mechanical models, and social skills such as playing the lute. Descartes taught
    Huygens education in mathematics. After his tutoring, Huygens entered Leiden University where he studied mathematics and law (from 1645 until 1647). His mathematics professor, Frans Van Schooten, had great renown in his field and Huygens learned much from him. From 1647 until 1649 he continued to study law and mathematics at the College of Orange at Breda. Here he was fortunate to have another skilled teacher of mathematics, John Pell.
    By this point, the road was going toward the end for Huygens. Huygens made a final visit to England in 1689. There he meets Sir Isaac Newton, a man who he admired. Huygens died on July 8, 1695 at The Hague, Netherlands. When he died some of his works were still unpublished, but later these works would appear in print successfully.

    85. Christiaan Huygens
    At these societies he met many mathematicians including Roberval,carcavi, Pascal, pierre Petit, Desargues and Sorbière. After
    http://physics.rug.ac.be/Fysica/Geschiedenis/Mathematicians/Huygens.html
    Christiaan Huygens
    Born: 14 April 1629 in The Hague, Netherlands
    Died: 8 July 1695 in The Hague, Netherlands
    In 1656 Christiaan Huygens patented the first pendulum clock, which greatly increased the accuracy of time measurement. Christiaan Huygens came from an important Dutch family. His father Constantin Huygens had studied natural philosophy and was a diplomat. It was through him that Christiaan was to gain access to the top scientific circles of the times. In particular Constantin had many contacts in England and corresponded regularly with Mersenne and was a friend of Descartes. Tutored at home by private teachers until he was 16 years old, Christiaan learned geometry, how to make mechanical models and social skills such as playing the lute. His mathematical education was clearly influenced by Descartes who was an occasional visitor at the Huygens' home and took a great interest in the mathematical progress of the young Christiaan. Christiaan Huygens studied law and mathematics at the University of Leiden from 1645 until 1647. Van Schooten tutored him in mathematics while he was in Leiden. From 1647 until 1649 he continued to study law and mathematics but now at the College of Orange at Breda. Here he was fortunate to have another skilled teacher of mathematics, John Pell. Through his father's contact with Mersenne, a correspondence between Huygens and Mersenne began around this time. Mersenne challenged Huygens to solve a number of problems including the shape of the rope supported from its ends. Although he failed at this problem he did solve the related problem of how to hang weights on the rope so that it hung in a parabolic shape.

    86. Rényi Alfréd: Levelek A Valószínűségről
    pierre Fermat úrnak, Toulouse. Uram! Közös barátunk, carcavi úr tegnap értesített,hogy Toulouseba utazik és kérdezte, nem kívánok-e Önnek levelet
    http://www.iif.hu/~visontay/ponticulus/typotex/levelek.html
    R‰NYI ALFR‰D LEVELEK A VAL“SZNÅ°S‰GRŐL Pascal első levele Fermat-hoz
    P¡rizs, Faubourg Saint-Michel
    1654. okt³ber 28. Pierre Fermat ºrnak,
    Toulouse Uram! K¶z¶s bar¡tunk, Carcavi ºr tegnap ©rtes­tett, hogy Toulouse-ba utazik ©s k©rdezte, nem k­v¡nok-e –nnek levelet k¼ldeni? Term©szetesen nem mulasztottam el a kedvező alkalmat, de csup¡n arra volt időm, hogy n©h¡ny sort ­rjak. M¡ra azonban kider¼lt, hogy Carcavi ºr k©t nappal elhalasztotta utaz¡s¡t: ­gy lehetős©gem ny­lt, hogy r©szletesen is ­rjak –nnek.
    Ezek ut¡n, ºgy hiszem, meg©rti, mi©rt ©reztem egyenesen ellen¡llhatatlan k©nyszert, hogy gondolataimat –nnel k¶z¶ljem. šgy hiszem azonban, hogy amikor id¡ig ©rkezik levelemben, biztosan azt gondolja: "mi©rt e sok előzetes magyar¡zkod¡s?" Szeretn©m, ha meg©rten© lelki¡llapotomat: –n az első, akivel e gondolataimat k¶zl¶m, ©s — b¡r t¶bb meg©rt©sre senkin©l sem sz¡m­thatok — m©gsem vagyok teljesen mentes a szorong¡st³l, siker¼l-e magamat meg©rtetnem. Ez©rt hºzom-halasztom, hogy belekezdjek, mint az, aki a foghºz¡st³l f©l, ©s hogy hºzza az időt, feleslegesen hosszadalmasan magyar¡zza az orvosnak, mikor kezdőd¶tt fogf¡j¡sa. De h¡t val³ban el©g ebből, t©rj¼nk a t¡rgyra.
    val³sz­nűs©g Szent­r¡s ban, p¡pai bull¡kban vagy zsinatok hat¡rozataiban tal¡lhat³k, "val³sz­nűnek" viszont az olyan meg¡llap­t¡sokat nevezik amelyek az egyh¡z valamely doktor¡nak k¶nyv©ben tal¡lhat³k meg. Ha teh¡t ugyanabban a k©rd©sben k¼l¶nb¶ző doktorok k¼l¶nb¶ző doktorok egym¡snak ellentmond³ m³don foglaltak ¡ll¡st, ezen ellentmond³ meg¡llap­t¡sok mindegyik©t "val³sz­nűnek" nevezik. Szerintem azonban ez a k¼l¶n¶s sz³haszn¡lat nem ok arra, hogy ker¼ljem a "val³sz­nűs©g" sz³ haszn¡lat¡t, hiszen nem hiszem, hogy a jezsuit¡kon k­v¼l ez b¡rkin©l is f©lre©rt©sre adhat okot. Az elnevez©sek megv¡laszt¡s¡nak k©rd©s©ben egy©bk©nt Descartes-ot k¶vetem, aki azt mondja

    87. Site Do Prof. Antonio Moreira Calaes
    Translate this page A data na qual pierre Fermat teria obtido a demonstração do seu demonstrado a proposiçãorestrita, para n=3, comunicando-aa carcavi, em correspondência
    http://www.powerline.com.br/~drcalaes/demo_do_teorema_port.htm
    Te orema de Fermat Resumo histórico "C ubus in duos cubus aut quadrato-quadratum in duos quadrato-quadratos et generaliter nullam in infinitum, ultra quadratum, potestatem in duas ejusdem nominis faz est dividere. A data na qual Pierre Fermat teria obtido a demonstração do seu grande teorema é imprecisa. Deve estar compreendida entre 1626, ano em que Bachet de Meziriac publicou as obras de Diophante, e 1665, que foi o ano do seu falecimento; mais aproximadamente, após 1659, ano que teria demonstrado a proposição restrita, para n =3, comunicando-a a Carcavi, em correspondência epistolar. Seguramente, esse notável evento ter-se-ia verificado há mais de três séculos!... Constatar a veridicidade desta proposição matemática vem se constituindo, por tão longo tempo, em fantástico e inebriante desafio à portentosa inteligência humana!... Mui justamente, causa inopinado pasmo que, em tão longo período, não se tenha conseguido uma demonstração cabal dessa proposição matemática, de aparência tão simples, não obstante os esforços despendidos por toda uma plêiade de ilustres e renomados matemáticos: Euler, Legendre, Lejeune - Dirichlet, Gauss, Sophie - Germain, Lamé, Liouville, Cauchy, Kummer, Kronecher, Kornecker, Abel, Matheus, Catalan, E. Lucas, Mirimanoff, Sylvester, Dickson, Wieferich, Frobenius, Fabry, Caben, Leon Pomey, Vandiver, Mordell, F. Beukers, H. M. Edwards, S. Lang, Paulo Ribenboim, R. Wait, etc. Nesses três séculos decorridos, desde a divulgação do enunciado do famoso Teorema de Fermat, uma porfia se estabeleceu, até os dias de hoje, por sucessivas gerações de ilustres matemáticos, entre os quais aqueles acima citados.

    88. Professor Antonio Calaes's Home Page
    The date in which pierre Fermat would have obtained the demonstration of his the restrictedproposition, for n = 3, communicating it to carcavi, in epistolary
    http://www.powerline.com.br/~drcalaes/versao_em_ingles/demo_do_teorema_ingl.htm
    Fe rmat's Theorem Historical Summary Surely that notable event would have been verified in more than three centuries !... Verifying the veridicalness of this mathematical proposition comes constituting itself for such long time, in fantastic and inebriating challenge to the marvellous human intelligence! More exactly, it causes inebriating astonishment that, in such long period an exact and generical demonstration of that mathematical proposition has not gotten discovered, of such simple appearance, nevertheless the extended efforts of an plead of illustrious and renowned mathematicians: Euler, Legendre, Lejeune-Dirichlet, Gauss, Sophie-Germain, Lamé, Liouville, Cauchy, Kummer, Kronecher, Kornecker, Abel, Matheus, Catalan, E.Lucas, Mirimanoff, Sylvester, Dickson, Wieferich, Frobenius, Fabry, Cahen, Leon Pomey, Vandiver, Mordell F. Beukers, H. M. Edwards, S. Lang, Paulo Ribenboim, R. Wait, etc. In the 19th century, for several decades, the National Academy of Sciences, from France Just unsuitable or partial works, valid demonstrations for mentioned proposition, exclusively, for certain categories of prime numbers lower to certain limits (limits more and more enlarged, reaching the hundreds of digits), they were disclosed or presented to that Institution. In the beginning of the current century, an endowment of 100.000 German marks was offered by

    89. The French Academy Of Sciences, 1666-91
    For earlier editions, see ixxi); pierre Goubert, Louis XIV et Vingt Millionsde On 2102, the entry for carcavi pooled two entries dated '20 janvier-22
    http://www.haven.u-net.com/6text_7B2.htm

      G.G.Meynell
      The French Academy of Sciences, 1666-91:

      under Colbert (1666-83) and Louvois (1683-91)
        1. Introduction 2. General Bibliography 3. Features of the Academy's accounts 4. Aspects of expenditure 6. Colbert and Louvois
        Appendices
        1. Guiffrey's edition of the
        du roi
        2. The text of Louvois' memoir: 3. Samuel Duclos ; his death-bed declaration: 4. Database: Hyperlinks are in blue (e.g. or App.2 Some destinations are in red such as Louvois' memoir, and the illustrations from Duclos' manuscript
        under Colbert (1666-83) and Louvois (1683-91)
        1. Introduction royale (Bibliography) . Both men were outstanding administrators of great experience who exercised wide powers under the King. But they were also long-standing antagonists, with the result that the early history of the Academy has sometimes been reduced to the differences between them. Although, as a recent author put it, 'It would certainly be an oversimplification to think in terms of a simple manichaeisme: Colbert, the good genius of Louis XIV, and Louvois, his bad angel...', it is not hard to find authors discussing the Academy in just this way, as in the 19th Century histories by Maury and by Bertrand, while comparisons of the two men appear in many later studies.
        All authors seem to agree on at least one point, that Colbert and Louvois differed in their tastes and in their relation to the Academy and, consequently, in how their administrations affected the Academy's life and work. All authors also share one grave handicap: the absence of many contemporary records that would have been expected. Thus, there is no official record of how or when the Academy was founded and the Academy's minutes of its meetings at this period generally have no record of the election of new members or even the names of those that attended each meeting. Worst of all, the minutes for 1670-74 are missing entirely. As a result, much of the Academy's early history rests on anecdote and hearsay (notably Fontenelle's

    90. BiblioDb
    strinse amicizia con il matematico Beaugrand, e subito dopo con carcavi.
    http://aleasrv.cs.unitn.it/bibliodb.nsf/302597ecdb19d859c12569510028207c/94c1b76

    91. L
    Translate this page Vol. 10 69, 70. Lestringuez (pierre). Vol. 34 213. Vol. 14 236. Lettre àCarcavi, à Huygens, à MADDS Vol. 40 258, 259, 260, 261, 265, 266, 268.
    http://www.aief.eu.org/Cahiers/Tables/L/l.php
    L'Esclache. Vol. 1 : 41, 42. L'Estoile (Claude de). Vol. 28 : 155. L'Estoile (Pierre de). Vol. 9 : 117, 166, 228. Vol. 10 : 90, 104. L'Hospital (Michel de). Vol. 3-4-5 : 103-104. Vol. 22 : 64, 104. Vol. 28 : 79, 354. L'Hotte . Vol. 17 : 287. La Barre de Beaumarchais (Antoine de). Vol. 25 : 193. La Barre (Chevalier de). Vol. 31 : 186. La Baume (Mme de). Vol. 43 : 51. La Beaumelle . Vol. 36 : 155. La Boétie (Etienne de). Vol. 10 : 78. Vol. 14 : 298. Vol. 43 : 27. Vol. 45 : 307. La Bruyère (Jean de). Vol. 1 : 33. Vol. 3-4-5 : 159. Vol. 6 : 149, 156. Vol. 7 : 104-105. Vol. 9 : 177-181. Vol. 11 : 36, 80. Vol. 13 : 204, 241, 242. Vol. 14 : 66. Vol. 17 : 179. Vol. 18 : 113, 156-162, 165, 273-275. Vol. 19 : 94, 264. Vol. 20 : 39, 301. Vol. 21 : 230. Vol. 22 : 310. Vol. 24 : 197, 198, 248. Vol. 25 : 169. Vol. 30 : 105, 110-119, 139-153, 168, 272-274. Vol. 35 : 47, 48, 72, 205. Vol. 38 : 91, 121-188, 287. Vol. 39 : 99. Vol. 40 : 46. Vol. 41 : 39, 166-171. Vol. 42 : 250, 307-308. Vol. 44 : 167, 245-366, 374-377. Vol. 45 : 53, 344. La Calprenède . Vol. 11 : 10, 23, 37, 91. Vol. 18 : 55, 60, 143. Vol. 19 : 102. Vol. 20 : 74, 75, 76, 77. Vol. 29 : 344.

    92. LEXIQUE ECONOMIQUE. Raoul Louis CAYOL

    http://perso.wanadoo.fr/raoul.louis.cayol/page88.html
    Académie des Sciences ( fondée par Colbert
    En 1666 sous le nom d'Académie royale des Sciences ).
    Leibniz solution de problèmes réels
    Adam Smith (1723-1790 ) : Né en Écosse. Sujet précoce qui est entré à l'Université ( Glasgow, puis Oxford ) à l'âge de 14 ans. (S'est intéressé à l'œuvre de David Hume ( 1711- 1776 ) et notamment à son " Traité de la nature humaine " . Nommé à la chaire de logique de l'Université de Glasgow, il établit sa notoriété avec le livre : " La théorie des sentiments " Il abandonne la chaire pour devenir précepteur du duc de Beccleugh et parcourt l'Europe avec le jeune noble. Il rencontre alors les économistes Quesnay et Page suivante
    Page précédente

    LEXIQUE
    Des termes suivis d'une pour les dix livres et l'épilogue.
    Raoul louis CAYOL
    ACCUEIL

    SOMMAIRE

    LIVRE I :
    UNE ERE NOUVELLE ... DOCUMENTS Evolution de la population du monde. PIB de l'Asie. PIB de l'Afrique. PIB des Amériques. Diagramme et causes du chômage. Financement social par la CSG. Evolution de la CSG. Montants de la CSG. Transfert des charges sociales de l'emploi sur la consommation. Concurrence des pays à bas salaires. TSVA selon le niveau de l'emploi.

    93. Le Site Des Archives Monétaires

    http://www.archivesmonetaires.org/inventaires/centres/bn_01amc.html
    France Archives nationales
    Monnaie de Paris

    Archives municipales
    , avec la collaboration de Laurent Henrichs
    1 AMC (1664-1725) 1 AMC 1 Lettre du Père Louis Jobert "à mon très cher cousin", sur une monnaie mérovingienne d'Uzès, s.d. 1 AMC 2 Correspondance de l'abbé Bénigne Bruno relative à son abbaye de Saint-Cyprien de Poitiers.
    (lettres acquises de Benjamin Fillon)
    1. Paris, 19 juillet 1664.
    2. Paris, 31 juillet 1664.
    3. Paris, 3 août 1664.
    4. Paris, 29 janvier 1665.
    5. Paris, 1er février 1665. 6. Paris, 6 février 1665. 7. Paris, 26 février 1665. 8. S.d. Billet de Carcavi à Bruno.

    94. 17¥@¬öªk°ê¼Æ¾Ç®a
    The summary for this Chinese (Traditional) page contains characters that cannot be correctly displayed in this language/character set.
    http://www.dyu.edu.tw/~mfht206/history/17/france.htm
    ¤Ú ´µ ¥d(Blaise Pasacl) ¥X¥Í¦~¥N¡G °êÄy¡G ªk°ê µÛ§@¡G ºâ³Nªº¤T¨¤§Î µo©ú¤F¤@ ³¡­pºâ¾÷ ¥Í¥­¡G ¸ê®Æ¥X³B¡G ¤j­^¦Ê¬ì¥þ®Ñ ¨f ¨F ®æ (Girard Desargues) ¥X¥Í¦~¥N¡G °êÄy¡G ªk°ê µÛ§@¡G ¥Í¥­¡G ¹ ¥² ¹F (L'Hospital) ¥X¥Í¦~¥N¡G °êÄy¡G ªk°ê µÛ§@¡G ¡mÄÄ©ú¦±½uªºµL½a¤p¤ÀªR¡n¡£1696¡¤ ¥Í¥­¡G ¸ê®Æ¥X³B¡G ¼Æ¾Ç¥v-¼Æ¾Ç«ä·Qªºµo®i¡]¤W¥U¡^P414 ©Mºô¯¸ºÛ¯T©~(www.mcjh.kl.edu.tw/usr/jks/jks.htm)
    ² ¥d ¨à (Descartes) ¥X¥Í¦~¥N¡G °êÄy¡G ªk°ê µÛ§@¡G ¡m½×¥@¬É¡n¡m¤èªk½×¡n¡m§Î¦Ó¤W¾Çªº¨I«ä¡n¤Î¡m­õ¾Ç­ì²z ¡n¡m´X¦ó¾Ç¡n ¥Í¥­¡G
    ±N¦±½u¤Àþ¡C
    ¸ê®Æ¥X³B¡G ¼Æ¾Ç¥v-¼Æ¾Ç«ä·Qªºµo®i
    ´Ð ¬ü ¥± (Moivre Abraham de) ¥X¥Í¦~¥N¡G °êÄy¡G ªk°ê µÛ§@¡G ½×½ä³Õªk ¥Í¥­¡G
    ¸ê®Æ¥X³B¡G
    ¤j­^¦Ê¬ì¥þ®Ñ P558
    ¶O °¨ (Fermat Pierre de) ¥X¥Í¦~¥N¡G °êÄy¡G ªk°ê ¥Í¥­¡G ¸ê®Æ¥X³B¡G ¼Æ¾Ç¥v-¼Æ¾Ç«ä·Qªºµo®i¡]¤W¥U¡^P296©Mºô¯¸ºÛ¯T©~(www.mcjh.kl.edu.tw/usr/jks/jks.htm)

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 5     81-94 of 94    Back | 1  | 2  | 3  | 4  | 5 

    free hit counter