Geometry.Net - the online learning center
Home  - Scientists - Ceva Giovanni

e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 91    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Ceva Giovanni:     more books (18)
  1. Geometria Motus Opusculum Geometricum (1692) (Latin Edition) by Giovanni Ceva, 2010-05-23
  2. Geometria Motus: Opvscvlvm Geometricvm (Czech Edition) by Giovanni Ceva, 2010-01-10
  3. Giovanni Ceva: An entry from Gale's <i>Science and Its Times</i> by Judson Knight, 2001
  4. 1734 Deaths: Georg Ernst Stahl, Giovanni Ceva, John Barrington, 1st Viscount Barrington, Peter Tillemans, Marie-Joseph Angélique
  5. Mathematician Introduction: Grigory Barenblatt, Ivan Vidav, Lorenzo Mascheroni, Vladimir Batagelj, Matevz Bren, Giovanni Ceva, Chris Freiling
  6. Geometria Motus Opusculum Geometricum (1692) (Latin Edition) by Giovanni Ceva, 2010-09-10
  7. Geometria Motus Opusculum Geometricum (1692) (Latin Edition) by Giovanni Ceva, 2010-09-10
  8. Decameron. by Giovanni Boccaccio. Introduction by Mario Marti. Notes by Elena Ceva Valla.. by Giovanni Boccaccio, 1979
  9. Geometria motus by Giovanni. Ceva, 1692-01-01
  10. Giovanni Benedetto Ceva Matematico Cesareo by fabio mercanti, 2004-01-01
  11. Memorie Storiche Della Città E Marchesato Di Ceva (Italian Edition) by Giovanni Olivero, 2010-02-12

61. Ceva's Theorem
The Italian mathematician giovanni ceva proved an interesting theorem aboutlines between vertices and points on the sides opposite the vertices.
http://www.intermath-uga.gatech.edu/tweb/gwin1-01/rising/7030/activity8.htm
The Italian mathematician Giovanni Ceva proved an interesting theorem about lines between vertices and points on the sides opposite the vertices. A point from a vertex of a triangle to a point on the opposite side is called a cevian of the triangle. Medians of a triangle are one example of cevians. There are many others. In the above triangle BE is a cevian. A cevian within a triangle has a pair of numbers p and q associated with it. Specifically and Similarly the ratios p , p , q and q are defined for the cevians AF and CG respectively . Theorem (Ceva): Three cevians of a triangle ABC are concurrent if and only if
An immediate consequence of this theorem is that the medians of a triangle are concurrent since each p i is ½ and each q i is ½. If three cevians of a triangle are not concurrent, then they determine a unique triangle JKL within the original triangle ABC. This triangle is called the cevian triangle. There is a formula for the area of the cevian triangle in terms of the area of triangle ABC Note that the area of the cevian triangle is precisely when or Problem Solution 1. Construct an arbitrary triangle in GSP and verify Ceva's theorem for the angular bisectors that determine the incenter.

62. Activity 8 - Ceva's Theorem
Math 7030. The Italian mathematician giovanni ceva proved an interesting theoremabout lines between vertices and points on the sides opposite the vertices.
http://www.intermath-uga.gatech.edu/tweb/gwin1-01/apley/activities/Act8.htm
Activity 8 - Ceva's Theorem
Math 7030
The Italian mathematician Giovanni Ceva proved an interesting theorem about lines between vertices and points on the sides opposite the vertices. A point from a vertex of a triangle to a point on the opposite side is called a cevian of the triangle. Medians of a triangle are one example of cevians. There are many others. In the above triangle BE is a cevian. A cevian within a triangle has a pair of numbers p and q associated with it. Specifically and Similarly the ratios p , p , q and q are defined for the cevians AF and CG respectively . Theorem (Ceva): Three cevians of a triangle ABC are concurrent if and only if An immediate consequence of this theorem is that the medians of a triangle are concurrent since each p i is ½ and each q i is ½. If three cevians of a triangle are not concurrent, then they determine a unique triangle JKL within the original triangle ABC. This triangle is called the cevian triangle.
There is a formula for the area of the cevian triangle in terms of the area of triangle ABC Note that the area of the cevian triangle is precisely when or Construct an arbitrary triangle in GSP and verify Ceva's theorem for the angular bisectors that determine the incenter.

63. Ceva's Theorem -- From MathWorld
(1). This theorem was first published by giovanni Cevian 1678. Coxeter, H.S. M. and Greitzer, S. L. ceva's Theorem. §1.2 in Geometry Revisited.
http://mathworld.wolfram.com/CevasTheorem.html

Geometry
Line Geometry Incidence
Ceva's Theorem

Given a triangle with polygon vertices A B , and C and points along the sides D E , and F , a necessary and sufficient condition for the cevians AD BE , and CF to be concurrent intersect in a single point) is that
This theorem was first published by Giovanni Cevian 1678. Let be an arbitrary n -gon, C a given point, and k a positive integer such that . For i n , let be the intersection of the lines and , then
Here, and
is the ratio of the lengths [ A, B ] and [ C, D Another form of the theorem is that three concurrent lines from the polygon vertices of a triangle divide the opposite sides in such fashion that the product of three nonadjacent segments equals the product of the other three (Johnson 1929, p. 147). Hoehn's Theorem Menelaus' Theorem
References Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 122, 1987. Coxeter, H. S. M. and Greitzer, S. L. "Ceva's Theorem." §1.2 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 4-5, 1967. Durell, C. V.

64. Ceva: Engagement Of Ceva, 1796 (Battles Of Napoleon)
giovanni Olivero Storia di ceva e del suo Marchesato (1858) An online bookin Italian, unillustrated, the Napoleonic chapters being LIIILIV.
http://napoleon.musketwars.com/cmpgn/c1796_italy/CPN_1796_Ceva.html
Ceva
Battles of Napoleon
Engagement of Ceva
(And the Besieging of the Fortress of Ceva) Date April 16-17, 1796
Command scale Division/Corps
Commanders Augereau (France) / Colli (Sardinia)
Right: View of the Sardinian fortified camp at Ceva. (Source - larger color version)
Battlefield

A strong fortified encampment on a bluff overlooking a town. The town itself was surrounded by the remaining ruins of medieval walls and overlooked by a palace, the Castello dei Pallavicino (not to be confused with the fortress).
Description
but was masked and bypassed by the French who continued their pursuit of the Sardinians to San Michele.
Outcome French Victory
Approximate forces
  • Napoleon (24,000) Colli (13,000)

  • Online Resources
  • Benvenuti nel Comune di Ceva Town guide, being a single page and photo. Giovanni Olivero: Storia di Ceva e del suo Marchesato (1858) An online book in Italian, unillustrated, the Napoleonic chapters being LIII-LIV. Ceva
  • Notes The Forte di Ceva was a military edifice originally built between the 11th and 12th centuries on a bluff overlooking the town but, as the above illustration shows, the Sardinian fortifications had been modernized. It was largely destroyed by the French at some time after the signing of the Armistice of Cherasco. Clearly a garrison remained at Ceva and held out for some time. The following excerpts from correspondence reproduced in the online book cited above indicate that it held out until after the Armistice of Cherasco. The first excerpt is a communication written by Bonaparte to the commander of Ceva:

    65. So Biografias: Britanicos Em C
    Translate this page V Céline Celsius, Anders Cernicchiaro, Vincenzo Cesalpino, Andrea Cesar César,Caio Júlio Ceschiatti, Alfredo Cézanne, Paul ceva, giovanni Chadwick, Edwin
    http://www.sobiografias.hpg.ig.com.br/LetraCB.html

    Cabral, Pedro Alvares

    Caetani
    Benedetto
    Caio,
    ...
    Santa

    Papa Celestino V
    Celsius, Anders
    Cernicchiaro, Vincenzo

    Cesalpino, Andrea
    ...
    de Alexandria
    Papas
    Clemente I VII
    Clementi, Muzio
    Clements, Frederick Edward ... Cuvier

    66. San Giovanni Macias
    Translate this page Da allora fino alla morte, avvenuta il 16 settembre 1645, fra' giovanni fu portinaiodel 1975, la vita di unione con Dio non solo non lo ceva appartare dagli
    http://www.domenicani.it/opchieri/Santi_e_sante/juanmacias.htm
    SAN GIOVANNI MACIAS
    frate cooperatore (+ 1645)
    18 settembre

    67. Ceva's Trisectrix
    giovanni C (16481734), an Italian mathematician and engineer, studied the curvefor b=2 2 Then the ceva's trisectrix is the collection of points M for which M
    http://www.2dcurves.com/sextic/sextict.html
    (extended) Ceva's trisectrix
    sextic
    last updated: This sextic is a botanic curve Giovanni C (1648-1734), an Italian mathematician and engineer, studied the curve for b=2
    The curve can be used for the trisection of an angle, as follows (see picture to the right).
    Let there be a circle C with center O. Draw a line through O which cuts C in P.
    Construct a point Q on the x-axis so that OP = PQ.
    Then the Ceva's trisectrix is the collection of points M for which:
    • M lies on the line through OP MP = PQ
    Now the angle OQM is triple the angle QOM.
    For b = 1/2, the curve is called the peanut curve
    For b = 1, the curve is called the double egg
    Some examples:
    For large values of parameter b, the curve approximates the quadrifolium rhodonea c=2). notes 1) Cartesian equation: (x + y = ((b+1)x - (b-1)y 2) This curve can also be written as: r = sin3 f /sin f

    68. Biography-center - Letter C
    Ceulen, Cornelis Janssens van www.getty.edu/art/collections/bio/a30261.html; ceva,giovanni www-history.mcs.st-and.ac.uk/~history/Mathematicians/ceva_giovanni
    http://www.biography-center.com/c.html
    Visit a
    random biography ! Any language Arabic Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Turkish
    C
    854 biographies

    69. ZACHARIAS BOVERIUS Von Saluzzo (Dr. Jur. Giovanni Boveri)
    ceva, in Italia
    http://www.bautz.de/bbkl/z/zacharias_bouverius.shtml
    Verlag Traugott Bautz www.bautz.de/bbkl Bestellmöglichkeiten des Biographisch-Bibliographischen Kirchenlexikons Zur Hauptseite des Biographisch-Bibliographischen Kirchenlexikons Abkürzungsverzeichnis des Biographisch-Bibliographischen Kirchenlexikons Bibliographische Angaben für das Zitieren ... NEU: Unser E-News Service
    Wir informieren Sie regelmäßig über Neuigkeiten und Änderungen per E-Mail. Helfen Sie uns, das BBKL aktuell zu halten! Band XVII (2000) Spalten 1579-1580 Autor: Johannes Madey Werke: Demonstrationes symbolorum verae et falsae religionis, 2 Bde, Lyon 1617; Paraenesis catholica, Lyon 1618; Censura paraenetica, Mailand 1621 [die letztgen. zwei Werke richten sich gegen die Auffassungen von Marcantonio de Dominis; siehe Ysambert); Orthodoxa consultatio de ratione verae fidei et religionis amplectendae, Madrid 1623, Köln 1626, Wien 1626, Rom 1635 [an König Charles I. von England gerichtet]; Annales ... Ordinis Minorum... qui Capucini nuncupantur, 2 Bde, Lyon 1632-1639 [Übers.en ins Italienische, Spanische, Französische, Polnische (dt. Auswahl: M. von Deggendorf u.a., Seraphinischer Paradeyß-Garten, 4 Bde, Salzburg 1664-1690)]. Lit.:

    70. Le Onorificenze
    Translate this page BRACORENS DE SAVOIROUX Carlo Maria, 12- 6- 1856. CAVALLI giovanni, 12- 6-1856. ceva DI NUCETO Amedeo, 12- 6- 1856. DELLA ROVERE Federico, 12- 6- 1856.
    http://www.quirinale.it/onorificenze/ElencoDecorati.asp?qIdOnorificenza=7&qReset

    71. Affine Theorems
    ceva's theorem (due to giovanni ceva in about 1678) If the sides BC, CA, AB of atriangle are divided by points L, M, N in the ratios 1 , 1 , 1 then the
    http://www.gap-system.org/~john/geometry/Lectures/L14.html
    Course MT3818 Topics in Geometry Previous page
    (Affine Geometry) Contents Next page
    (Similarity geometry)
    Affine theorems
    In fact, many of the theorems of so-called Euclidean geometry are affine theorems. That is, their statement and proof only involve concepts which are preserved by affine transformations.
    Roughly speaking, affine theorems are ones which can be proved by vector methods without using norms or dot or vector products. Examples
  • The medians of a triangle are coincident. Proof
    If the triangle has vertices a b and C then it is easy to verify that the medians meet at the point ( a b C
  • Ceva's theorem (due to Giovanni Ceva in about 1678)
    If the sides BC CA AB of a triangle are divided by points L M N in the ratios 1 : then the three lines AL BM CN are concurrent if and only if the product
    Proof
    In fact, we'll prove this using non-affine methods.
    CL LB CLA LBA CLP LBP CAP ABP Similarly AM MC ABP BCP and BN NA BCP CAP and the result follows.
  • Menelaus's theorem (due to Menelaus in about 100 AD) If the sides of a triangle are divided by points L M N in the ratios 1 : then the three points L M N are collinear if and only if the product Proof Note that the ratio in which a point L divides an interval AB is negative if L does not lie inside AB Draw AP parallel to ML . Then 1/ CM MA CL LP and 1/ AN NB PL LB Then 1/( CL LP PL LB CL LB and the result follows.
  • 72. Infantiae.Org 2002 - "Ricordare Giovanni Falcone"
    Translate this page Già, la politica. Croce e delizia di giovanni Falcone. Non fa­ceva politica conle sentenze. Ciò, naturalmente, non vuol dire che non,avesse idee politiche.
    http://www.fondazionefalcone.it/falconerapporto6061.htm
    Dal libro di F. La Licata, Rizzoli, Milano 1993. La politica
    Già, la politica. Croce e delizia di Giovanni Falcone. Per una vita ha cercato di sfuggirne agli agguati, ma puntualmente se l'è ritrovata davanti. come un muro. Tutti hanno tentato di catturarlo, pochi ci sono riusciti e non per sempre. Hanno sbagliato quelli che volevano dipingerlo come un rivoluzionario: Falcone era un conserva­tore illuminato. Un uomo con un forte senso dello Stato. Un giudice che credeva nel ruolo della magistra­tura, ma anche nei limiti che si deve imporre. Non fa­ceva politica con le sentenze. Ciò, naturalmente, non vuol dire che non,avesse idee politiche. E comunque aveva avuto una forma­zione progressista che lo spingeva a gettarsi nella mi­schia, ogni volta che si trattava di difendere o affermare i diritti civili. A Trapani è esistito anche un Falcone impegnato nella grandi battaglie di libertà di quegli anni. Ecco come lo ricordano.

    73. Dynamic Geometry Module: Lesson 3
    opposite side. In tribute to the Italian mathematician giovanni ceva,these are sometimes called cevians of the triangle. In the
    http://mtl.math.uiuc.edu/modules/dynamic/lessons/lesson3.html
    Dynamic Geometry Module
    Lesson 3: Ceva's Theorem
    Discovering Ceva's Theorem
    This result deals with line segments that go from one vertex of a triangle to a point on the opposite side. In tribute to the Italian mathematician Giovanni Ceva, these are sometimes called cevians of the triangle. In the figure below, AW AX BY , and CZ (in red) are all examples of cevians for the triangle ABC (in blue). Although the term cevian may be new to you, the concept is certainly not. You have seen examples. For instance, the medians, the altitudes, and the angle bisectors are examples of cevians. You have probably noticed that, in each of these examples, the three cevians all go through a single point. Ceva's Theorem gives a condition that determines whether or not three cevians from the three vertices of a triangle will have this concurrency property. Open the next sketch ( See file ex3_1.gsp ). This shows a generic triangle along with three cevians, one from each vertex. We have also included the ratios into which the endpoints of the cevians divide their corresponding sides of the triangle. Use this sketch to perform the following experiments. In each case, record the values for the ratios CX XB AY YC , and BZ ZA
  • Set X and Y to be as close as you can make them to the midpoints of BC and CA respectively. This means that the corresponding ratios should be as close as you can make them to 1.000. Now slide
  • 74. Ceva_thm
    The theorem is named for giovanni ceva, an Italian mathematicianwho lived from 1648 to 1734. The lines from each vertex to the
    http://www.pballew.net/ceva_thm.html
    Ceva's Theorem Ceva's Theorem states that if three lines are drawn in a triangle from each vertex to the opposite sides (AA', BB', and CC' in the figure) they intersect in a single point if, and only if, the sides are divided into parts so that :    The theorem is named for Giovanni Ceva, an Italian mathematician who lived from 1648 to 1734.  The lines from each vertex to the opposite side are often called Cevians in his honor.  You can find a biography of Ceva at the St. Andrews University web site. This theorem makes some of the geometric proofs  of concurrency almost trivial corollarys .   The medians, for example, divide each side into a 1:1 ratio, so that all three of the ratios in the formula equal 1, and therefore have a product of one.  It is almost as easy to prove the angle bisectors meet in a single point with Ceva's theorem. Here you can find a clever javascript proof of Ceva's Thm that requires nothing beyond middle school geometry formulas. There is a second simple identity that is known, but not WELL known. Let three cevians be drawn from the vertices (A, B, and C)through a common point, P, and intersecting the opposite sides (perhaps extended) at A', B', and C' as in the figure. Then for the points as described, it is true that AP/AA' + BP/BB' + CP/CC' = 2 . I was first exposed to this pretty little property in a note to the MathForum Geometry discussion list by the Greek Mathematician Antreas P. Hatzipolakis. I recently learned on one of the geometry discussion lists at the Math Forum that the Cevian is also used in 3-D for the segment from a vertex of a tetrahedron to the opposite face (possibly extended). In the same thread I had speculated that I thought the property above would extend to the tetrahedron as well with a sum of the ratios equal to three. Eisso J Atzema of The University of Maine confirmed my belief with a simple proof that extended from triangles to any N-dimensional simplex. I quote directly from his post:

    75. PizzaUp -Pizza Magazine-
    Translate this page LA PIANA DI BADO giovanni LUIGI C. SNC, 15. V. ROMITA, 12073, ceva. LOMBARDINORBERTO, 14. V. SAULI, 12073, ceva. BAR PIZZERIA LE VOLTE SAS, 57.
    http://www.pizzaup.it/html/img/pizzerie/province/cuneoprov.htm
    Per consultare l'elenco di CUNEO clicca qui RAGIONE SOCIALE INDIRIZZO CAP. PROV. PIZZERIA IL PORTICHETTO 31. BG. BORGO VILLA ACCEGLIO COSCIA MARIA CARLA - UGO GASTRONOMIA 4. V. ALFIERI ALBA GHIOTTOPIZZA ALBA IL MEDITERRANEO SAS 1. V. SANNINO ALBA MUSCEDRA STEFANO ALBA PIZZA AL TAGLIO DEL CORSO 49. C. PIAVE ALBA PIZZA DEL CORTILETTO 2. P. GARIBALDI GIUSEPPE ALBA PIZZA EXPRESS LA SPIGOLATRICE 12. C. ITALIA ALBA PIZZA SI 9. VL. CHERASCA ALBA PIZZERIA AGLI ARCHI SNC 29. C. EUROPA ALBA PIZZERIA CINCILLA' 2. V. GIACOSA ALBA PIZZERIA LA DUCHESSA 5. V. OSPEDALE ALBA PIZZERIA RISTORANTE MARECHIARO 97. V. BRA ALBA PIZZERIA ROMITA ALBA PIZZERIA SERENELLA 7. V. SABOTINO ALBA PIZZERIA RISTORANTE DRAGO VERDE 14. V. DEL CHIOT ARGENTERA MAXIM'S PUB DI SARDO ALESSANDRO SAS 51. V. NAZIONALE BAGNASCO PIZZERIA LA RUOTA SAS 31. V. BAGNOLO BARGE PIZZERIA TRATTORIA LA SFINGE 5. P. IV NOVEMBRE BASTIA MONDOVI' LOVENO MARIO BEINETTE PIZZERIA VALENTINA DI PERANO LUIGI E PELLEGRINO IVANA SNC 32. V. XX SETTEMBRE BENE VAGIENNA PIZZA AL TAGLIO DI BIGONGIARI VALERIA E UGO SNC 91. V. ROMA BORGO SAN DALMAZZO PIZZERIA MARECHIARO BORGO SAN DALMAZZO PIZZERIA PIEDIGROTTA 90. C. BARALE GIOVANNI E SPARTACO

    76. Confartigianato - Cuneo
    Translate this page ORA DI PELLISSERO EC SNC, via Circonvallazione n 28, 12045 Fossano. ODETTOGIORGIO, c.so Garibaldi n.94, 12073 ceva. OFF. QUAGLIA MARIO giovanni,
    http://www.confartcn.it/consorzi/socicar.htm
    RAGIONE SOCIALE INDIRIZZO COMUNE A.S.R DI ARMANDO ROBERTO Via Caraglio n.10 12010 Vignolo ACCHIARDO LORENZO Via Cuneo n.48 12025 Dronero ALBERTI LUCIANO Via Marconi n.13 12019 Vernante AMBROGIO GUIDO Via L. Negrelli n.15 12100 Cuneo AMERIO PIERLUIGI via S. Agostino n.6 12073 Ceva AMERIO VINCENZO via S.Agostino n.4 12073 Ceva ARDUSSO GIUSEPPE via Savigliano n. 36/A 12037 SALUZZO ARIAUDO SIMONE via Cuneo n 162 12045 Fossano AUDISIO E GALVAGNO piazza Caduti Libertà n. 6 12035 RACCONIGI AUTOCEVA DI BERRONE ROBERTO C.so Garibaldi n.56/A 12037 Ceva AUTORIP. FORLANI SNC via Salita Salice n 1 12045 Fossano via Saluzzo n.16

    77. Spettacoli In Abbonamento - Sito Web Teatro Marenco - Ceva (CN)
    Translate this page Città di ceva Assessorato alla Cultura, Teatro Stabile di Torino Circuito Teatrale ELA VIRTU' di Luigi Pirandello con Gisella Bein, giovanni Boni, Monica
    http://www.teatromarenco.it/abbonamento.htm
    STAGIONE di PROSA STAGIONE 2001 - 2002 TORNA ALL'INDICE Teatro Carlo Marenco Ceva
    La Compagnia Teatro Marenco
    in collaborazione con
    Assessorato alla Cultura Teatro Stabile di Torino
    Circuito Teatrale Regionale
    in collaborazione con
    ENTE TEATRALE ITALIANO Regione Piemonte
    Assessorato alla Cultura presenta la
    STAGIONE DI PROSA IN ABBONAMENTO 2001 - 2002 Sabato 1 dicembre 2001
    LA CENA DEI CRETINI
    di Francis Veber con Gaspare e Zuzzurro (Andrea Brambilla e Nino Formicola) e Alessandra Schiavoni, Carlo Pistarino, Gilda Postiglione, Andrea Di Casa regia di Andrea Brambilla Pre avere maggiori invormazioni sullo spettacolo cliccare QUI Sabato 12 gennaio 2002 L'UOMO, LA BESTIA E LA VIRTU' di Luigi Pirandello con Gisella Bein, Giovanni Boni, Monica Fantini,Giorgio Lanza, Marco Pajolo, Lino Spadaro, Margherita Volo

    78. Aracoeli: Affreschi Inediti
    Translate this page Strinati, nella cappella di San giovanni Baylon (già di San giovanni), sacellofunerario delle famiglie Capodiferro, Buzi, Grimaldi, ceva, Colonna (?) sono
    http://www.italica.rai.it/principali/argomenti/arte/aracoeli.htm
    Partecipa al Forum Newsletter Links Download ... Cerca Argomenti Aracoeli: affreschi inediti
    Home page

    Lingua

    Radio

    Diario di bordo
    ...
    Archivio
    Santa Maria in Aracoeli: gli affreschi inediti della scuola romana del Duecento La Chiesa di Santa Maria in Aracoeli viene edificata nel 1285. Secondo la leggenda la Vergine Maria apparve ad Ottaviano nel luogo adiacente all’attuale Campidoglio, in cui oggi sorge la chiesa medesima. All’interno dell'edificio, appartenente all'ordine francescano, s’incontrano secoli di Storia. Le colonne in marmo romano, come la pavimentazione cosmatesca, la Cappella Bufalini con "Le Storie di San Bernardino" di Bernardino di Betto detto il Pinturicchio" risalenti al ‘400, gli affreschi tardomanieristi absidali del ‘500 inoltrato e infine una splendida tavola con una "Trasfigurazione" di Girolamo Siciolante da Sermoneta, anch'essa tardomanierista.
    Ora, grazie alla curiosità di un giovane storico dell’Arte, il prof. Tommaso Strinati, nella cappella di San Giovanni Baylon (già di San Giovanni), sacello funerario delle famiglie Capodiferro, Buzi, Grimaldi, Ceva, Colonna (?) sono venuti alla luce dei brani di un affresco che, ad un’analisi lenticolare, sembrano essere collocabili intorno alla prima metà del 1200. Si tratta di una "Madonna con Bambino", affiancata dalle figure di "San Giovanni Evangelista" e di "San Giovanni Battista" ed una torre in compiuto scorcio prospettico, color rosso-sangue, simile iconograficamente ad un’altra torre affrescata nella Basilica Superiore di Assisi ed attribuita a Giotto.

    79. Antenati: Tommaso Ceva
    Translate this page All'ambiente culturale gesuitico si ricollega Tommaso ceva. Nato a Milano nel1648 (morto nel 1736 o 1737), fu insieme al fratello giovanni, matematico.
    http://www.girodivite.it/antenati/xviiisec/_ceva_t.htm
    Tommaso Ceva
    Tommaso Ceva
    Homepage ... Indice storico Contesto Up Send Print Email ... an opensource project

    80. Italian New Testament--Giovanni
    Translate this page seguente, giovanni vide Gesù che veniva a lui, e disse Ecco l'Agnello di Dio,che toglie il pec- cato del mondo. 30 Costui è quel del quale io di- ceva
    http://www.acm.ndsu.nodak.edu/NDSU_Christian/bps/italian.bps/johnita.htm

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 4     61-80 of 91    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter