Geometry.Net - the online learning center
Home  - Scientists - Chuquet Nicolas

e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 88    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Chuquet Nicolas:     more detail
  1. Nicolas Chuquet, Renaissance Mathematician by Graham Flegg, C. Hay, et all 1984-11-30
  2. 15th-Century French People: Princess of Condé, Nicolas Chuquet, Philippe Basiron, Nicolas Jenson, Nicholas of Clémanges, Guy Marchant
  3. Nicolas Chuquet: An entry from Gale's <i>Science and Its Times</i> by Judson Knight, 2001
  4. Mathématicien Du Xve Siècle: Nicolas Chuquet, Luca Pacioli, Regiomontanus (French Edition)
  5. Prédécesseur de L'algèbre Nouvelle: Jacques Pelletier Du Mans, Nicolas Chuquet, Francesco Maurolico, Jordanus Nemorarius, Jean de Séville (French Edition)
  6. Nicolas Chuquet: Estienne de La Roche, Exponentiation, Jehan Adam, Jacques Pelletier du Mans, Long and Short Scales, English Numerals, List of Numbers, Names of Large Numbers
  7. Nicolas Chuquet, Renaissance Mathematician by Graham Flegg, 1980

61. Azuoliukas Boys Choir
Distribution STUDIO SM 3, rue nicolas chuquet 75017 PARIS. DistributionSTUDIO SM 3, rue nicolas chuquet 75017 PARIS. Maurice Duruflè.
http://www.boychoirs.org/azuoliukas/azuoliukas1.html
REPERTOIRE
RECORDINGS The Choir's repertoire consists of contemporary and classical secular and religious music. Compositions performed with orchestra accompaniment constitute a significant part of the choir's repertoire. The following pieces are performed: Requiem by Mozart Requiem, Mass Cum Jubilo by Duruflè Requiem by Cherubini The War Requiem by Britten Dido and Aeneas by Purcell Judas Maccabeaus, Belsazar by Händel Gloria, Stabat Mater by Poulenc Die Jahreszeiten by Haydn Alexander Nevsky by Prokofiev Spring by Rachmaninov Cantatas #21, 106, 140, 150, 196, Magnificat by Bach Symphonies #2, 3, 8 by Mahler The Music Makers by Elgar Magnificat by Rutter Stabat Mater by Pergolesi Tosca by Puccini La domnation de Faust by Berlioz Execution of Stepan Razin by Shostakovich Don't touch a Blue Globe by Balsys The choir has given numerous performances on radio and television as well as recorded about 30 LPs and 5 CDs. A lot of its performance's where given together with the Lithuanian Chamber orchestra (S.Sondeckis), Lithuanian National Symphony Orchestra (J.Domarkas) and Lithuanian State Symphony Orchestra (G.Rinkevicius), as well as with orchestras from other countries, such as Moscow Radio, Israel Philharmonic, Warsaw Radio, St.Petersburg Philharmonic Symphony Orchestras, conducted by V.Fedoseyev, N.Sheriff, G.Bertini, V.Ponkin. The choir's most talented singers continue their studies at the Academy of Music and become professional musicians.

62. Full Alphabetical Index
Translate this page Grace (583*) Chowla, Sarvadaman (819*) Christoffel, Elwin (1580*) Chrysippus (831)Chrystal, George (2763*) Chu Shih-Chieh (80) chuquet, nicolas (299) Church
http://www.maththinking.com/boat/mathematicians.html
Full Alphabetical Index
Click below to go to one of the separate alphabetical indexes A B C D ... XYZ The number of words in the biography is given in brackets. A * indicates that there is a portrait.
A
Abbe , Ernst (602*)
Abel
, Niels Henrik (2899*)
Abraham
bar Hiyya (641)
Abraham, Max

Abu Kamil
Shuja (1012)
Abu Jafar

Abu'l-Wafa
al-Buzjani (1115)
Ackermann
, Wilhelm (205)
Adams, John Couch

Adams, J Frank

Adelard
of Bath (1008) Adler , August (114) Adrain , Robert (79*) Adrianus , Romanus (419) Aepinus , Franz (124) Agnesi , Maria (2018*) Ahlfors , Lars (725*) Ahmed ibn Yusuf (660) Ahmes Aida Yasuaki (696) Aiken , Howard (665*) Airy , George (313*) Aitken , Alec (825*) Ajima , Naonobu (144) Akhiezer , Naum Il'ich (248*) al-Baghdadi , Abu (947) al-Banna , al-Marrakushi (861) al-Battani , Abu Allah (1333*) al-Biruni , Abu Arrayhan (3002*) al-Farisi , Kamal (1102) al-Haitam , Abu Ali (2490*) al-Hasib Abu Kamil (1012) al-Haytham , Abu Ali (2490*) al-Jawhari , al-Abbas (627) al-Jayyani , Abu (892) al-Karaji , Abu (1789) al-Karkhi al-Kashi , Ghiyath (1725*) al-Khazin , Abu (1148) al-Khalili , Shams (677) al-Khayyami , Omar (2140*) al-Khwarizmi , Abu (2847*) al-Khujandi , Abu (713) al-Kindi , Abu (1151) al-Kuhi , Abu (1146) al-Maghribi , Muhyi (602) al-Mahani , Abu (507) al-Marrakushi , ibn al-Banna (861) al-Nasawi , Abu (681) al-Nayrizi , Abu'l (621) al-Qalasadi , Abu'l (1247) al-Quhi , Abu (1146) al-Samarqandi , Shams (202) al-Samawal , Ibn (1569) al-Sijzi , Abu (708) al-Tusi , Nasir (1912) al-Tusi , Sharaf (1138) al-Umawi , Abu (1014) al-Uqlidisi , Abu'l (1028) Albanese , Giacomo (282) Albategnius (al-Battani) (1333*)

63. History Of Mathematics: Europe
Regiomontanus) (14361476); Luca Pacioli (c. 1445-c. 1514); nicolas chuquet(c. 1445-c. 1500); Leonardo da Vinci (1452-1519); Johann Widman
http://aleph0.clarku.edu/~djoyce/mathhist/europe.html
Europe
Web sites relevant to the History of Mathematics in Europe
See Greece for mathematicians writing in Greek, and see the general chronology for European mathematicians after 1500.
Mathematicians through 1500
  • Marcus Terentius Varro (116-27 B.C.E.)
  • Balbus (fl. c. 100 C.E.)
  • Anicius Maulius Severinus Boethius (c. 480-524)
  • Flavius Magnus Aurelius Cassiodorus (c. 490-c. 585)
  • Bede (673-735)
  • Alcuin of York (c. 735-804)
  • Gerbert d'Aurillac, Pope Sylvester II (c. 945-1003)
  • Adelard of Bath (1075-1164)
  • John of Seville (c. 1125)
  • Plato of Tivoli (c. 1125)
  • Girard of Cremona (1114-1187)
  • Robert of Chester (c. 1150)
  • Robert Grosseteste (c. 1168-1253)
  • Leonardo of Pisa (Fibonacci) (1170-1240)
  • Alexandre de Villedieu (c. 1225)

64. Names For Large Numbers
The French physician and mathematician nicolas chuquet (14451488) apparently coinedthe words byllion and tryllion and used them to represent 10 12 and 10 18
http://www.unc.edu/~rowlett/units/large.html
How Many? A Dictionary of Units of Measurement
Russ Rowlett and the University of North Carolina at Chapel Hill Table of Contents
About the Dictionary

Using the Dictionary
Names for Large Numbers
The English names for large numbers are coined from the Latin names for small numbers n by adding the ending -illion suggested by the name "million." Thus billion and trillion are coined from the Latin prefixes bi- n = 2) and tri- n = 3), respectively. In the American system for naming large numbers, the name coined from the Latin number n applies to the number 10 n . In a system traditional in many European countries, the same name applies to the number 10 n In particular, a billion is 10 = 1 000 000 000 in the American system and 10 = 1 000 000 000 000 in the European system. For 10 , Europeans say "thousand million" or "milliard." Although we describe the two systems today as American or European, both systems are actually of French origin. The French physician and mathematician Nicolas Chuquet (1445-1488) apparently coined the words byllion and tryllion and used them to represent 10 and 10 , respectively, thus establishing what we now think of as the "European" system. However, it was also French mathematicians of the 1600's who used

65. Biography-center - Letter C
lriddle/women/chung.htm; chuquet, nicolas wwwhistory.mcs.st-and.ac.uk/~history/Mathematicians/chuquet.html;Church, Alonzo www-history
http://www.biography-center.com/c.html
Visit a
random biography ! Any language Arabic Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Turkish
C
854 biographies

66. Histoire Des Maths Pour Le Collège
Translate this page racine carrée, Léonard de Pise dit Fibonacci en 1220. 2 racine carrée,nicolas chuquet (Français, 2ème moitié du XVème siècle).
http://trucsmaths.free.fr/hist_symbol.htm
Histoire des symboles de mathématiques
Retour à la page des trucs
Les symboles que l'on utilise actuellement de manière naturelle n'ont pas toujours existé. Ils sont apparus en général entre le XVème et le XVIIIème siècle.
Cette page traite principalement des symboles utilisés au collège.
Recorde (Anglais, 1510-1558) en 1557 et Thomas Harriot(anglais) en 1621 et (addition et soustraction p et m Widmann (Allemand, vers 1460) et (signe d'un nombre Oughtred (Anglais, 1574-1660) en 1631
Symboles de multiplication a x b (croix de St-André pour la multiplication) Oughtred en 1631 a * b (étoile pour la multiplication) Johann Rahn (Allemand, 1622-1676) en 1659 a b (point pour la multiplication) Leibniz (Allemand, 1646-1716) en 1698 ab au lieu de a x b Stifel (1486-1567) en 1544 x n (notation en exposant pour les puissances)
Symboles de division Rahn (Allemand, 1622-1676) en 1659 Leibniz (Allemand, 1646-1716) en 1698 (trait oblique pour la division) De Morgan (Anglais, 1806-1871) (fraction avec trait horizontal) mots et
Symboles de racines carrées Nicolas Chuquet (Français, 2ème moitié du XVème siècle)

67. A History Of Hypercomplex Numbers
Detailed timeline of the development of hypercomplex numbers, from early discoveries of complex numbers Category Science Math History...... solution to the quadratic equation. 1484, nicolas chuquet (14451500)writes Triparty en la sciences des nombres. The fourth part of
http://history.hyperjeff.net/hypercomplex.html
Taking too long to load?
Smaller screen?
Try the Slim version Jeff Biggus
Part of the HyperJeff Network
Sketching the History of
Hypercomplex Numbers
last updated Sunday, 13-Jan-2002 23:20:42 MST Brahmagupta (598-670) writes Khandakhadyaka which solves quadratic equations and allows for the possibility of negative solutions. pre
Abraham bar Hiyya Ha-Nasi
writes the work Hibbur ha-Meshihah ve-ha-Tishboret , translated in 1145 into Latin as Liber embadorum , which presents the first complete solution to the quadratic equation. Nicolas Chuquet (1445-1500) writes Triparty en la sciences des nombres . The fourth part of which contains the "Regle des premiers," or the rule of the unknown, what we would today call an algebra. He introduced an exponential notation, allowing positive, negative, and zero powers. In solving general equations he showed that some equations lead to imaginary solutions, but dismisses them ("Tel nombre est ineperible"). pre
Nicolo Fontana (Tartaglia)
finds the general method for solving all types of cubic equations and tells Cardano, under the promise that Cardano tell no one until he publishes first. Cardno tells everyone in 1545. Geronimo Cardano (1501-1576) writes Ars magna on the solutions of cubic and quartic equations. In it, solutions to polynomials which lead to square roots of negative quantities occur, but Cardano calls them "sophistic" and concludes that it is "as subtle as it is useless."

68. Untitled
Translate this page autre côté que les nouveautés de Léonard ne sont reçues que beaucoup plus tarddans les oeuvres des mathématiciens français, nicolas chuquet par exemple
http://palissy.humana.univ-nantes.fr/CETE/TXT/boysset/2pch4.htm
Partie 2
Chapitre 4 Formules de Bertran
Algorisme de Pamiers Compendion de lo abaco Summa de la art de arismetica Algorisme de Pamiers Un deuxième angle d'approche, qui s'éloigne de la langue, qui observe le genre " géométrie pratique " tel qu'il se développe au Moyen Âge et qui essaie de réintégrer l'oeuvre de l'arlésien dans ce mouvement prolifique parait devoir être plus prometteur. practica geometriae , au picard pratike de geometrie et au toscan geometria pratica pratique pratique pratique si l'on se situe en dehors de lui. Cette traduction de practica Quoi de commun en effet entre la Practica geometriae de Fibonacci et les Regole di geometria pratica Liber abaci pratique captatio benevolentiae mensor geumetrie et le mensor laicus qui lui s'occupe réellement de mesurer sans chercher de démonstration à ce qu'il avance. Après avoir douté de l'existence d'un rapport entre la circonférence et le diamètre du cercle, Dominicus nous dit : " Je n'ai pas l'intention de parler de façon démonstrative mais seulement d'enseigner à en trouver la surface [du cercle] de telle sorte qu'il ne reste pas d'erreur perceptible . " , il serait peu utile d'essayer de chercher des points communs entre Fibonacci, Nicolas Chuquet, Jean Fusoris et Bertrand Boysset.

69. Discographie
Translate this page avec l'autorisation de l'auteur et de l'éditeur © Raoul Mutin, 69 avenue du Lac,21000 Dijon, France © Studio SM, 3 rue nicolas chuquet, 75017 Paris, France.
http://www.portstnicolas.net/cms.php?pageid=409

70. Oliver Streiter A Semantic Description Language For Multilingual NLP
Strumenti Bompiani, Milano. chuquet and Paillard89 Hélène chuquet and MichelPaillard. 1989. Nédeau98 nicolas Nédeau. 1998. Semantic classes.
http://solaris3.ids-mannheim.de/workshop/stra.html

The Tuscan Word Centre
PAROLE German Subconsortium
A Semantic Description Language for Multilingual NLP
Oliver Streiter
IAI
oliver@iai.uni-sb.de
Bibliography
Bouscaren and Chuquet87
Janine Bouscaren and Jean Chuquet.
Grammaire et Textes Anglais, Guide pour l'analyse linguistique
OPHYS, Paris.
Leonardo Bruni.
Tradurre correttamente (de interpretatione recta, 1420).
In Siri Nergaard, editor, La teoria della traduzione nella storia. Testi di Cicerone, San Gerolamo, Bruni, Goethe, von Humboldt, Schleiermacher, Ortega y Gasset, Croce Benjamin . Strumenti Bompiani, Milano.
Chuquet and Paillard89

OPHRYS, Paris.
Collins and Quillian68
A.M Collins and M.R. Quillian. Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior
Antoine Culioli. Sur le concept de notion.
Antoine Culioli. Collection L'Homme dans la Langue. OPHYS, Paris.
Danon-Boileau87
Laurent Danon-Boileau. Collection L'Homme dans la Langue. OPHYS, Paris.
Greimas and Joseph89
Langue Linguistique Communication. Hachette, Paris.
Mildred L. Larson.

71. Publius Historicus : L'index Des Sciences Au XVIe Siecle
nicolas chuquet; Luigi Ferrari;John Napier (Neper); Michael Stifel; Niccoló Tartaglia; François Viète.
http://www.publius-historicus.com/science.html
L'index des sciences
au XVIe siècle
NB: L'affectation de ces scientifiques à telle ou telle catégorie est un peu arbitraire. Par exemple, les mathématiciens purs n'existaient pas, ils étaient en général architectes ou médecins. Par ailleurs, les astrologues étaient aussi souvent médecins ou astronomes.
Astronomie
Mathématiques
En mathématique, le XVIe siècle a vu de grands progrès dans la trigonométrie et l'algèbre avec en particulier la résolution des équations du troisième degré, l'emploi des nombres négatifs puis des nombres complexes, et des logarithmes. Ces nouveaux outils connurent un succès rapide en raison de leurs applications dans le commerce, l'astronomie et les sciences de l'ingénieur.
Les notations se simplifièrent. Les chiffres arabes (qui étaient en fait d'origine indienne) étaient déjà apparus progressivement entre les X-XIIIe siècles. Les symboles +, - et remplacèrent progressivement les lettres p, m et r (pour radicus
Sciences et Techniques de l'Ingénieur, Architecture, Machines de guerre

72. Earliest Uses Of Grouping Symbols
Vinculum below. The first use of the vinculum was in 1484 by nicolas chuquet(1445?1500?) in his Le Triparty en la Science des Nombres.
http://members.aol.com/jeff570/grouping.html
Earliest Uses of Grouping Symbols
Last revision: June 24, 1999 Vinculum below. The first use of the vinculum was in 1484 by Nicolas Chuquet (1445?-1500?) in his Le Triparty en la Science des Nombres. The bar was placed under the parts affected (Cajori vol. 1, pages 101 and 385). Chuquet wrote: The above expression in modern notation is . This use of a vinculum appears to be the earliest use of a grouping symbol of any kind mentioned by Cajori. Vinculum above. According to Cajori, the first use of the vinculum above the parts affected was by Frans van Schooten (c. 1615-1660), who "in editing Vieta's collected works, discarded the parentheses and placed a horizontal bar above the parts affected." In Van Schooten's 1646 edition of Vieta, is used to represent B D BD Ball (page 242) says the vinculum was introduced by Francois Vieta (1540-1603) in 1591. This information may be incorrect. Grouping expressed by letters. In the late fifteenth century and in the sixteenth century various writers used letters or words to indicate grouping. The earliest use of such a device mentioned by Cajori (vol. 1, page 385) is the use of the letter v for vniversale by Luca Paciolo (or Pacioli) (c. 1445 - prob. after 1509) in his

73. ROMALILAR DÖNEMÝ'NDE BÝLÝM - FORSNET
ve Onaltinci Yüzyil) • Doga ve Bilgi Felsefesi • Matematik – RaffaelloBombelli – Girolamo Cardano – nicolas chuquet – Lodovice Ferrari
http://www.bilimtarihi.gen.tr/yenicag/yenidendogus/matematik.html
Eskiçað'da Bilim Yunanlýlar Döneminde Bilim Romalýlar Döneminde Bilim Ortaçað'da Bilim ... Yakýnçað'da Bilim YENÝÇAÐ'DA BÝLÝM Matematik Bu dönem diðer alanlarda olduðu gibi matematik alanýnda da yeniden bir uyanýþýn gerçekleþtiði ve özellikle trigonometri ve cebir alanlarýnda önemli çalýþmalarýn yapýldýðý bir dönemdir. Trigonometri, Regiomontanus , daha sonra da Rhaeticus ve Bartholomaeus Pitiscus `un çabalarýyla ve cebir ise Scipione del Ferro Nicola Tartaglia Geronimo Cardano ve Lodovice Ferrari tarafýndan yeniden hayata döndürülmüþtür. Yapýlan çalýþmalar sonucunda geliþtirilen iþlem simgeleri, þu anda bizim kullandýklarýmýza benzer denklemlerin ortaya çýkmasýna olanak vermiþ ve böylelikle, denklem kuramý biçimlenmeye baþlamýþtýr. Rönesans matematiði özellikle Raffaello Bombelli François Viète ve Simon Stevin ile doruk noktasýna ulaþmýþtýr.

74. Untitled
nicolas chuquet, (c. 1445 c. 1500) French physician. chuquet wrote Triparty en lascience des nombres (1484), a work on algebra and arithmetic in three parts.
http://www.math.tamu.edu/~don.allen/history/renaissc/renassc.html
Next: About this document
April 2, 1997 Algebra in the Renaissance The general cultural movement of the renaissance in Europe had a profound impact also on the mathematics of the time. Italy was especially impacted. The Italian merchants of the time travelled widely throughout the East, bringing goods back in hopes of making a profit. They needed little by way of mathematics. Only the elementary needs of finance were required.
  • determination of costs
  • determination of revenues
After the crusades, the commercial revolution changed this system. New technologies in ship building and saftey on the seas allows the single merchant to become a shipping magnate. These sedentary merchants could remain at home and hire others to make the journeys. This allowed and required them to make deals, and finance capital, arrange letters of credit, create bills of exchange, and make interest calculations. Double-entry bookkeeping began as a way of tracking the continuous flow of goods and money. The economy of barter was slowly replaced by the economy of money we have today. Needing more mathematics, they inspired the emergence of a new class of mathematician called

75. Palais Beaumont Organisation De Spectacles
Translate this page Laurent Bretéché Régisseur Audio Vidéo. nicolas chuquet RégisseurAudio Vidéo. Ramon Alonso Responsable sécurité et aménagement.
http://www.paucc.com/pdc_public/fr/presentation/equipe/equipe.htm
Histoire du Palais Beaumont Film du Palais Beaumont Visite du Palais Beaumont Face Sud
Face Nord

Rez de Jardin

Premier Etage
... Partenaires
L'EQUIPE DU PALAIS BEAUMONT
DES COMPETENCES COMPLEMENTAIRES : Directeur
Lydia Fourcade

Sandrine Cousseran
: Responsable des Ventes
Emmanuelle Rodriguez
: Assistante Commerciale
Evelyne Ladois

Thierry Petit
Nicolas Chuquet Ramon Alonso ... Eric Chevillot : Responsable Administratif et Comptable
plan du site webmaster

76. Matematiikan Historia; Muun Maailman Matemaatikot
Translate this page Jordanus Nemorarius, Nicole Oresme Richard Suiseth (Calculator), Al-Kashi JohannesMüller (Regiomontanus) Adam Riese Luca Pacioli nicolas chuquet Johann Widman
http://solmu.math.helsinki.fi/2000/mathist/muumaa.html
Muun maailman matemaatikot
Thales Pythagoras
Hippokrates

Hippias
... Hipparkhos -801 eKr. 800-601 eKr. 600-401 eKr. 400-201 eKr. 200-1 eKr. Heron
Klaudios Ptolemaios

Menelaos
Diofantos ...
Gerbert (paavi Sylvester II)
1-199 (jKr.) Omar Khaijjam
Adelard
Bhaskara
Gerard Cremonalainen
... Matematiikkalehti Solmu

77. Repertorium Fontium Historiae Medii Aevi. Lemmario
nicolas de la Chesnayevol. VIII, 183; nicolas chuquet vol. VIII, 183; nicolas Flamel vol.
http://www.isime.it/Repertorium/Lemmario/listan02.htm
  • Narratiuncula quaedam ex veteri chronico de captione urbis Faventinae, a. 740 vol. VIII, 128
  • Narratiuncola de fundatione coenobii S. Crucis apud Brunsvic, a. 1230 vol. VIII, 128
  • Narratiuncola de fundatione Scheftlariensi v.
    • De fundatione Scheftlariensi narratiuncula vol. IV, 145
  • Narratiuncola de fundatione monasterii Vitaescholae in Cimbria vol. 8(19980128
  • Narratiuncola de Roberto I comite Flandrensi vol. VIII, 128
  • Narrative of the expulsion of the English from Normandy vol. VIII, 128
  • Narrative of the marriage of Richard duke of York with Ann of Norfolk vol. VIII, 129
  • Narrative of the proceedings against dame Alice Kyteler, prosecuted for sorcery in 1324 by Richard de Ledrede, bishop of Ossory in Ireland vol. VIII, 129
  • Narratives of the arrival of Louis de Bruges, seigneur de la Gruthuyse, in England, and of his creation as Earl of Winchester in 1472 v.
    • Record of Bluemontle Puirsuivant
  • Naso v.
    • Moduinus vol. VII, 610
  • Naso, Giovanni vol. VIII, 129
  • Nassi David ben Hodaya de Bagdad vol. VIII, 129
  • N'At de Mons vol. VIII, 130
  • Natales aliquot sanctorum ex fastis consularibus excerpti v.

78. The Radical Symbol
The French writer nicolas chuquet (1484) sometimes used R x 2 forR x , R x 3 and R x 4 for cube and fourth roots, respectively.
http://www.und.edu/instruct/lgeller/radical.html
The Radical Symbol
Before symbols, the words "roots" or "side" were commonly used for the square root of a number. Arab writers thought of a square number as growing out of a root, so Arabs often used the word radix , "extracting," or pulling out, the root. Latin writers thought of it as "finding" the latus, or side of a square. Late medieval Latin writers turned radix into a single symbol R x . This was used for more than one hundred years. The French writer Nicolas Chuquet (1484) sometimes used R x for R x , R x and R x for cube and fourth roots, respectively. The symbol was introduced by Christoff Rudolff in 1525 in his book Die Coss . It is believed this symbol was used because it resembled a small r radix ) at the time. The cube and fourth roots were as shown below:
Cube Root Fourth Root Rudolff's symbol was not immediately used. The letter l (latus, "side") was often used. For example the square root of 4 was l 4 and the third root of 5 was lc 5. By the seventeenth century, the square root symbol was being used regularly even though there were many ways the indices were written for higher roots.

79. Proloc Paris Paris City Guide , Road Index (N)
Translate this page 12eme-M20 nicolas CHARLET (RUE)15eme-P11 nicolasCHUQUET (RUE)17eme-D9 nicolas FLAMEL (RUE
http://www.geocities.com/~proloc2/streetind/A75000/VOIE3N.html

A
B C D ... Z
-NomArdtMap NABOULET (IMPASSE)17eme-
NADAUD (PLACE MARTIN)-20eme-
NADAUD (RUE GUSTAVE)16eme-
NANCY (RUE DE)10eme-
NANETTES (RUE DES)11eme-
NANSOUTY (IMPASSE)14eme-
NANSOUTY (RUE)14eme-
NANTES (RUE DE)-19eme-
NANTEUIL (RUE)15eme- NAPLES (RUE DE)-8eme NAPOLEON III (PLACE)10eme- NARBONNE (RUE DE)-7eme NARCISSE DIAZ (RUE)-16eme- NARVIK (PLACE DE)-8eme NATION (PLACE DE LA)12eme- NATIONAL (PASSAGE)13eme- NATIONAL (PONT)-12eme- NATIONALE (IMPASSE)-13eme- NATIONALE (PLACE)-13eme- NATIONALE (RUE)-13eme- NATIONS UNIES (AVENUE DES)16eme- NATIVITE (RUE DE LA)12eme- NATTIER (PLACE)-18eme- NAVARIN (RUE DE)9eme NAVARRE (RUE DE)5eme NAVIER (RUE)17eme- NAZARETH (RUE NOTRE DAME DE)3eme NECKER (RUE)4eme NEGRIER (CITE)7eme NELATON (RUE)-15eme- NEMOURS (RUE DE)11eme- NERVAL (RUE GERARD DE)18eme- NESLE (RUE DE)6eme NETHES (IMPASSE DES DEUX)-18eme- NETTER (AVENUE DU DOCTEUR ARNOLD)-12eme- NEUF (PLACE DU PONT)1er- NEUF (PONT)-1er- NEUF (QUAI DU MARCHE)-4eme NEUF (RUE DU PONT)1er- NEUILLY (AVENUE DE)-17eme- NEUILLY (ROUTE DE LA MUETTE A)16eme- NEUVE (RUE DE LA VILLE)-2eme NEUVE (RUE DE TERRE)20eme- NEUVE DE LA CHARDONNIERE (RUE)18eme- NEUVE DES BOULETS (RUE)-11eme- NEUVE POPINCOURT (RUE)11eme- NEUVE SAINT PIERRE (RUE)4eme NEUVILLE (RUE ALPHONSE DE)17eme- NEVA (RUE DE LA)8eme NEVERS (IMPASSE DE)-6eme NEVERS (RUE DE)-6eme NEVEU (RUE GINETTE)-18eme- NEW YORK (AVENUE DE)16eme- NEWTON (RUE)16eme- NEY (BOULEVARD)-18eme- NICARAGUA (PLACE DU)17eme- NICE (RUE DE)-11eme- NICOLAI (RUE)-12eme- NICOLAS (COUR SAINT)11eme-

80. Mathématiques Bac Première L Besançon
Translate this page Une activité à réaliser sur tableur Ce problème est dû à NicolasChuquet (Paris 1445 - Lyon 1500). Médecin à Lyon, il écrit
http://artic.ac-besancon.fr/mathematiques/reflycee/chuquet.htm

Maths et Info
WORD 97
RTF

etc …
Calculer la part de chacun.

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 4     61-80 of 88    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter