Geometry.Net - the online learning center
Home  - Scientists - Feigenbaum Mitchell

e99.com Bookstore
  
Images 
Newsgroups
Page 3     41-60 of 92    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Feigenbaum Mitchell:     more detail
  1. Chaos: The New Science (Nobel Conference XXVI) by John Holte, James Gleick, et all 1993-03-19
  2. Current conservation and double spectral representations for scattering of vector particles by Mitchell J Feigenbaum, 1971

41. TexteCIES_Feigenbaum
Translate this page mitchell feigenbaum. feigenbaum, né à la fin de la seconde guerremondiale, a passé un doctorat en physique des particules en
http://www.ens-lyon.fr/~fpicano/Feigenbaum/
Mitchell F EIGENBAUM
- si , la suite converge vers le seul point fixe
- si
cf. fig.
Figure 1: Un point fixe attracteur. Figure 2:
Figure 3: Figure 4:
Comportement chaotique. etc. , pour des valeurs de Figure: , avec et le point critique de transition vers le chaos. puis etc.

42. TexteCIES_Feigenbaum
Translate this page next suivantÀ propos de ce mitchell feigenbaum. feigenbaum, néà la fin de la seconde guerre mondiale, a passé un doctorat
http://www.ens-lyon.fr/~fpicano/Feigenbaum/texteCIES_Feigenbaum.html
suivant: Mitchell F EIGENBAUM
- si , la suite converge vers le seul point fixe
- si
cf. fig.
Figure 1: Un point fixe attracteur. Figure 2:
Figure 3: Figure 4:
Comportement chaotique. etc. , pour des valeurs de Figure: , avec et le point critique de transition vers le chaos. puis etc.
suivant: Pierre Borgnat

43. References
5 feigenbaum, mitchell, ``Quantatitive Universality for a Class of NonlinearTransformations'', Journal of Statistical Physics, 19, (1978), 2552.
http://users.viawest.net/~keirsey/node5.html
Next: About this document ... Up: Toward the Physics of Previous: Involution and Levels of
References
B ALDWIN , J.M. ``A new factor in evolution'', American Naturalist B USS , Leo W., The Evolution of Individually , Princeton University Press, (1987). C RUTCHFIELD , James P. and Karl Y OUNG , ``Computation at the Onset of Chaos'', In Complexity, Entropy, and the Physics of Information, SFI Studies in the Sciences of Complexity , Vol VIII, Ed. W.H. Z UREK , Addison-Wesley, (1990). C RUTCHFIELD , James, ``The Calculi of Emergence: Computation, Dynamics, and Induction'', Physica D F EIGENBAUM , Mitchell, ``Quantatitive Universality for a Class of Nonlinear Transformations'', Journal of Statistical Physics, G OODWIN , Brian, How the Leopard Changed its Spots , Touchstone Books, (1994). F ONTANA , Walter and Leo W. B USS . ``What would be conserved if `the tape were played twice'?'' Proc. Natl. Acad. Sci. USA, (1994), 757-761. K AUFFMAN , Stuart, The Origins of Order , Oxford University Press, (1993). K AUFFMAN , Stuart, At Home in the Universe , Oxford University Press, (1995).

44. Dave's Articles
feigenbaum, mitchell, ``Quantatitive Universality for a Class of NonlinearTransformations'', Journal of Statistical Physics, 19, (1978), 2552.
http://users.viawest.net/~keirsey/articles.html
Articles
  • Ackley, D.H., and Littman, M.L. "Altruism in the evolution of communication," In R.A. Brooks and P. Maes (eds.)

  • Artificial Life IV (Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living
    Systems), Cambridge, MA: The MIT Press (1994), pp. 40-48.
  • Baez, John Octonions , http://math.ucr.edu/home/baez/Octonions/ B ALDWIN , J.M. ``A new factor in evolution'', American Naturalist Cahill, Reginald T, "Process Physics: Inertia, Gravity and the Quantum," arXiv:gr-qc/0110117, 3rd Australasian Conference on General Relativity and Gravitation, Perth, Australia, July 2001. Crutchfield, James. P, David P. Feldman, "Regular Unseen, Randomness Observed: Levels of Entropy Convergence," Sante Fe Institute Working Paper 01-020012. C RUTCHFIELD , James P. and Karl Y OUNG , ``Computation at the Onset of Chaos'', In Complexity, Entropy, and the Physics of Information, SFI Studies in the Sciences of Complexity , Vol VIII, Ed. W.H. Z UREK , Addison-Wesley, (1990). C RUTCHFIELD , James, ``The Calculi of Emergence: Computation, Dynamics, and Induction'', Physica D F EIGENBAUM , Mitchell, ``Quantatitive Universality for a Class of Nonlinear Transformations'', Journal of Statistical Physics
  • 45. Chaos-Making A New Science By James Gleick
    An excerpt from the awardwinning bestseller that brought the forefront of chaos research to public Category Science Math Chaos and Fractals Chaos...... Gallery; mitchell feigenbaum; James Yorke; CompLexicon. They werehard to surprise. But mitchell feigenbaum was an unusual case. He
    http://www.around.com/chaos.html
    "An awe-inspiring book. Reading it gave me that sensation that someone had just found the light switch." —Douglas Adams "This is a stunning work, a deeply exciting subject in the hands of a first-rate science writer. The implications of the research James Gleick sets forth are breathtaking."-Barry Lopez The book and the audiotape at a discount from Amazon. Nature's Chaos Chaos: The Software More chaos links:
  • Good starting point: sci.nonlinear.faq
  • Applied chaos at Georgia Tech
  • Fractal Domains Gallery ...
  • CompLexicon
  • "Gleick's Chaos is not only enthralling and precise, but full of beautifully strange and strangely beautiful ideas."-Douglas Hofstadter "I was caught up and swept along by the flow of this astonishing chronicle of scientific thought. It has been a long, long time since I finished a book and immediately started reading it all over again for sheer pleasure.-Lewis Thomas From the Prologue: T he police in the small town of Los Alamos, New Mexico, worried briefly in 1974 about a man seen prowling in the dark, night after night, the red glow of his cigarette floating along the back streets. He would pace for hours, heading nowhere in the starlight that hammers down through the thin air of the mesas. The police were not the only ones to wonder. At the national laboratory some physicists had learned that their newest colleague was experimenting with twenty-six-hour days, which meant that his waking schedule would slowly roll in and out of phase with theirs. This bordered on strange, even for the Theoretical Division.

    46. Kurze Literaturliste
    Translate this page Gaston Julia im Netz nichts für schwache Gemüter! mitchell feigenbaumGeboren wurde mitchell feigenbaum 1944 in Philadelphia, USA.
    http://aleph.physik.uni-kl.de/tag_der_physik/literatur.html
    Kurze Literaturliste
  • Stefan Greschik: "Das Chaos und seine Ordnung. Einführung in komplexe Systeme." DTV, Taschenbuch (1998) Preis: DM 14,80
  • John Briggs, F. David Peat: "Die Entdeckung des Chaos. Eine Reise durch die Chaos-Theorie" DTV, Taschenbuch (1999) Preis: DM 19,50
  • Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe: "Bausteine des Chaos. Fraktale" Rowohlt-Taschenbuch (1998) Preis: DM 29,50
  • Benoit Mandelbrot: "Die fraktale Geometrie der Natur. Sonderausgabe" Birkhäuser Verlag (1991) Preis: DM 56,00
  • Ilya Prigogine: "Die Gesetze des Chaos." Insel-Verlag (1998) Preis: DM 12,80
    Kurzbiographien
    Benoit Mandelbrot
    Benoit Mandelbrot im Netz

    Gaston Julia
    Gaston Julia im Netz

    ...nichts für schwache Gemüter!

    Mitchell Feigenbaum
    Geboren wurde Mitchell Feigenbaum 1944 in Philadelphia, USA. Trotz seiner mathematischen und naturwissenschaftlichen Begabung quälte er sich mehr schlecht als recht durch das amerikanische Schulsystem, schloss aber 1970 sein Studium ab und lehrte im Anschluss an verschiedenen Hochschulen und Einrichtungen. Seine bedeutendsten Arbeiten über die Universalität gewisser Eigenschaften logistischer Abbildungen veröffentlichte er während seiner Zeit beim Los Alamos National Laboratory im US-Bundesstaat Neu Mexiko. Feigenbaum ist seit 1986 Toyota Professor am Rockefeller Institut in New York.
    Mitchell Feigenbaum im Netz

    Feigenbaum-Homepage an der Rockefeller University in New York

    Hier geht es zurück!
  • 47. A Beginner's Guide To Chaos: Feigenbaum's Bifurcation Diagram
    The bifurcation diagram was not created by mitchell feigenbaum, buthe found a way to understand it that no one had thought of.
    http://www.yiin.ca/chaos/fig.htm
    Feigenbaum's Bifurcation Diagram
    The bifurcation diagram was not created by Mitchell Feigenbaum, but he found a way to understand it that no one had thought of. Among other things, the bifurcation diagram represents an idealized version of how a system can become chaotic. As you can see from the diagram below, the diagram splits into two after a certain point (a bifurcation) and into four at a later point. The bifurcations come faster and faster until the system becomes chaotic. Feigenbaum discovered that the bifurcations were occurring at a ratio that approached an irrational number that is approximately 4.669 in the bifurcation diagram. This was found to be true by experiment in real life examples. 4.669 is a universal constant in much the same way 3.14 is. Feigenbaum's bifurcation diagram is often called the fig tree because Feigenbaum means fig tree in German (also the bifurcation diagram looks somewhat like a sideways tree).
    Back to Index

    48. FeigenbaumGeschichte
    Translate this page Dieses Diagramm heißt übrigens nicht feigenbaum, weil es so aussieht, sondern wurdebenannt nach dem Physiker mitchell feigenbaum, der sich in den siebziger
    http://www.jgs-kassel.de/aktuelles/prowo2003/chaos_alt/geschichte.html

    49. Bibliography
    feigenbaum, mitchell J. (1978), Quantitative Universality For a Class of NonlinearTransformations, Journal of Statistical Physics, vol 19., No.
    http://inetsrv.lettersfromthecosmos.com/cosmos_ref.htm
    Arbib, Michael A. (1964), Brains, Machines, and Mathematics, McGraw-Hill. Ashby, W. Ross (1964), Cybernetics, Methuen. Bertalanffy, Ludwig von (1968), General Systems Theory: Foundations, Development, Applications, New York, George Braziller. Baruss, Imants (1987), "Metanalysis of Definitions of Consciousness," Imagination, Cognition and Personality, vol 6(4), 1986-87, pp 321 - 329 Brown, Keith Wayne (1997), "The I/Not-I Discourse: The World of Existence and the World of Existenz", Epsitemology & Jaspers Seminar, http://www.unt.edu/heidegger/pdfs/kb1.pdf Crosson, F. J. and Sayre, K. M., editors (1967), Philosophy and Cybernetics, Simon and Schuster. Day, Richard H. (1982), "Irregular Growth Cycles," American Economic Review, June 1982, Vol. 72, No. 3, pp 406 – 444. Day, Richard H. (1983), "The Emergence of Chaos From Classical Economic Growth," May 1983, pp 201-213. Eddington, A. S. (1953), Fundamental Theory, Cambridge University Press. Feigenbaum, Mitchell J. (1978), "Quantitative Universality For a Class of Nonlinear Transformations," Journal of Statistical Physics, vol 19., No. 1, 1978, pp25-81. Feigenbaum, M. J. (1979), "The Onset Spectrum of Turbulence," Physics Letters, Vol. 74A, No. 6, Dec 10, 1979, pp 375-378.

    50. Patterns In Chaos: The Feigenbaum Discovery
    This was the state of affairs in which mitchell feigenbaum, then of the Los AlamosNational Laboratory, found himself while studying some very simple classes
    http://www.wolfram.com/products/explorer/topics/chaos.html
    Overview Prime Numbers Calculus Computing Pi ... Turtle Fractalization Patterns in Chaos Fermat's Last Theorem The Riemann Hypothesis Unusual Number Systems The Four-Color Theorem ... Topics
    Most of us are taught that mathematics is clear-cut and predictable, but let's imagine that your formulas give vastly different results for only slightly different inputs. Imagine further that your formulas are completely unpredictable under certain conditions. This was the state of affairs in which Mitchell Feigenbaum, then of the Los Alamos National Laboratory, found himself while studying some very simple classes of functions in a way that no one had before. It led to the uncovering of some unexpected and universal patterns involving very simple functions. Explore the numbers and plots that underlie the Feigenbaum constant, and along the way find explanations of ideas central to chaos theory.

    51. Feigenbaum
    Dette billede undrede matematikeren mitchell feigenbaum nok til athan studerede fænomenet nøjere. Til sin store overraskelse
    http://hjem.get2net.dk/bnielsen/feigen.html
    A A D M ... W [Location: Site-Map Matematik Feigenbaum Search
    Feigenbaum
    March 12, 2003 Birger Nielsen bnielsen@daimi.au.dk , drinker of tea
    This document: http://hjem.get2net.dk/bnielsen/feigen.html

    52. Mitchell Feigenbaum I Uniwersalno¶æ
    mitchell feigenbaum i uniwersalnosc. Dla kazdego z przygotowaniemmatematycznym, kto stoi nad morzem w czasie sztormu, staje
    http://strony.wp.pl/wp/berith/stro/nauk/nau3.html
    Mitchell Feigenbaum i uniwersalno¶æ
    "Dla ka¿dego z przygotowaniem matematycznym,
    kto stoi nad morzem w czasie sztormu,
    staje siê oczywiste,
    ¿e nic nie wie."
    M. Feigenbaum
    Oko³o roku 1975 Mitchell Feigenbaum w Los Alamos ¶lêcza³ nad kalkulatorem i bada³ przebieg funkcji opisuj±cych zachowanie populacji. Pomijaj±c wszystkie szczegó³y, powiedzmy tylko, ¿e odkry³ on sta³± (nazwan± pó¼niej sta³± Feiganbauma: d = 4,6692016090), która pozwala opisywaæ pewne zachowania chaotyczne, np. dynamikê przep³ywu cieczy, kapi±ce krany czy zmiany wielko¶ci populacji jakiego¶ wybitnie wrednego gatunku szkodnika. Jej znaczenie jest porównywalne do znaczenia liczby pi , a wystêpowanie w wielu ró¿nych uk³adach nosi nazwê uniwersalno¶ci . W praktyce sta³a d jest stosunkiem odleg³o¶ci miêdzy kolejnymi punktami bifurkacji. E.Lorenz J.Yorke,R.May I.Prigogine M.Markus ... e-mail: berith@wp.pl

    53. Meeting Minutes April 2002
    (Moved by A. mitchell, seconded by T. feigenbaum, carried.). 7. Adjournment.Motion to adjourn (Moved by R. Berman, seconded by A. mitchell, carried.).
    http://www.highered.nysed.gov/tcert/resteachers/minutes/April02minutes.html
    State Professional Standards and Practices Board for Teaching Meeting Minutes Location: State Education Department Albany, New York Present: David A. Caputo, co-chair Selina A. Ahoklui Janet A. Ahola Patrick Allen Richard A. Berman Ernest Clayton Vivian V. Demers-Jagoda Theresa R. DiPasquale Todd R. Feigenbaum Alison C. Hyde Gerald M. Mager Sally Mechur Nicholas M. Michelli Anne Mitchell Eva M. Mroczka Maria Neira Lucretia F. Pannozzo Marilyn O. Pirkle Dawn Santiago-Marullo Patricia M. Squicciarini Nona Weekes Absent and excused: Jean B. Rose, co-chair Mary R. Cannie Thomas D. Gillett Hubert Keen Luis A. Ramirez Tarry Shipley Staff present: Charles C. Mackey Nancy Taylor Baumes Nancy Brennan APRIL 18, 2002 1. Call To Order Day One of the meeting was called to order by Maria Neira, chair pro tem, at 11:44 a.m. 2. Subcommittee Reports Higher Education Subcommittee – Jerry Mager reported in the chair’s absence. The subcommittee met on April 18, prior to the full board meeting. The subcommittee discussed the Regents Accreditation process and received an update on the TEAC accreditation process. Professional Practices Subcommittee – Lucretia Pannozzo reported that the subcommittee met on April 18, prior to the full board meeting. The subcommittee reviewed the Middle Level Education Plan, alternative certification, and the Code of Ethics draft. The subcommittee also reviewed Part 83 cases.

    54. PHASE TRANSITION
    The edge of chaos seems to be the phase transition state of the system or the place where choices Category Science Social Sciences Semioticians Thom, René...... mitchell feigenbaum proved that there was a mathematical relationship in all open,dynamical systems.(4) This relationship became the universal number ratios
    http://www.wfu.edu/~petrejh4/PhaseTransition.htm
    Judy Petree's Homepage
    Go to Chaos Index

    Go to Part 1: History

    Go to Part 2: Instability
    ...
    Go to Next Part 5: Deep Chaos

    Part 4: PHASE TRANSITION
    Listen to how the music bifurcates. The edge of chaos seems to be the phase transition state of the system or the place where choices are made and take place. There has always been turbulence in the universe, it has been recognized in the scientific world since Poincare and Lorenz researched the motions of the atmosphere and their relevance to weather prediction. David Ruelle and Floris Takens opened up a new way to look at turbulence in their paper "On the nature of turbulence." Most of the time if turbulence showed up in an experiment, it was ignored, accounted for by factoring it out, or declared a failed experiment. But, Ruelle and Takens used ideas of Rene Thom and Steve Smale , who were mathematicians working with "differentiable dynamical systems." They proved that not only could the onset of turbulence be mathematically formulated by use of nonlinear equations, but also it showed that turbulence was directly related to the sensitive dependence on initial conditions, and that the turbulence was described by strange attractors. Chaos theory developed from open dynamical systems with a time evolution with sensitive dependence on initial conditions. It has also been called deterministic noise

    55. Golden Rectangle
    Translate this page Space in Ancient Greece, Doxiadis, CA, MIT 1972 Presentation Functions, Fixed Pointsand Theory of Scaling Function feigenbaum, mitchell J. Dynamics, Journal
    http://www.alcione.org/goldmean.htm
    por Alex Franz
    y
    Dibuje un cuadrado
    Bisecte el cuadrado.
    la linea de la base del cuadro como se muestra.
    de la base.
    Extienda la parte superior del cuadrado hacia
    ya que se encuentra en casi todas las cosas de la
    AB/CB = CB/AC =
    que sostiene la UNIDAD del Universo
    Lectura para empezar A Romance in Many Dimensions , Abbott, Edwin A., Flatland: Dover, 1884 Order in Space , Critchlow, Keith, Thames and Hudson Mathematical Models , Cundy y Rollet, Tarquin Publications The Geometry of Art and Life , Ghyka, Matila, Dover, 1978 Symmetry Shapes, Space, and Symmetry , Holden, Alan, , Dover, 1971 The Divine Proportion: A Study in Mathematical Beauty , Huntley, H.E.,Dover 1970 The 4th Dimension Simply Explained , Manning, Henry, Peter Smith An Adventure in Multidimensional Space , Miyazaki, Koji, Wiley Interscience, 1986 Polyhedron Models , Wenninger, Magnus J., Cambridge University Press, 1974 Lectura avanzada Patterns in Space , Col. R.S. Beard,- Creative Publications- Regular Polytopes , Coxeter, H.S.M., Dover, 1973 The Power of Limits Synergetics , Fuller, R. Buckminster, MacMillan, 1982

    56. Science Timeline
    Fauchard, Pierre, 1728. Fechner, Gustav Theodor, 1860. FDA (Food and Drug Administration),1982. feigenbaum, mitchell, 1975. Fenner, Frank, 1948. Fenton, HJH, 1894.
    http://www.sciencetimeline.net/siteindex_e-f.htm
    use checkboxes to select items you wish to download
    Select Index Letter:
    a
    b c d ... w-x-y-z
    Early, Philip, 1980 Earth, second millenium bce Eckert, John, 1946 eclipses, 747 bce, fourth century bce Eddington, Arthur Stanley, 1914, 1919, 1920, 1923, 1926, 1924 Edelman, Gerald M., 1959, 1962, 1967, 1978 Edsall, John Tileston, 1935 Ehrlich, Paul, 1897, 1903 Eigen, Manfred, 1971, 1986 Eijkman, Christiaan, 1897 Einstein, Albert, 1904, 1905, 1905, 1905, 1905, 1906, 1907, 1908, 1911, 1913, 1913, 1915, 1915, 1916, 1917, 1919, 1921, 1922, 1923, 1924, 1925, 1927, 1927, 1932, 1934, 1935, 1938, 1938, 1939, 1939, 1957, early 1960s, 1964, 1974, 1982, 1995, 1997 Einthoven, Willem, 1903 Eldredge, Niles, 1972 Elliott, James L.,1977 Elliott, T. R., 1904 Ellis, Richard, 2001

    57. The Feigenbaum Constant And Universality
    mitchell feigenbaum noticed that succesive differences appear to converge geometrically(see Fig.(3.9)) and that the ratio of successive separations tends to a
    http://staff.science.nus.edu.sg/~parwani/c1/node34.html
    Next: Experimental Tests Up: A Discrete Model of Previous: Bifurcation Diagrams Contents
    The Feigenbaum Constant and Universality
    Let us denote the critical value of at which the logistic map bifurcates into a period- orbit as , so that for the map has a stable period orbit. Look at the bifurcation diagram in Fig.(3.7) and Fig.(3.9). Notice how the distance, , between period doublings decreases as the control parameter is increased.
    The first few values of are
    Mitchell Feigenbaum noticed that succesive differences appear to converge geometrically (see Fig.(3.9)) and that the ratio of successive separations tends to a constant as k goes to infinity,
    Although the discussion so far has been strictly limited to the logistic map, the constant is the same for other smooth one-dimensional maps with a single hump . This is an example of universality , a concept which we will encounter more of when studying phase transitions in the next chapter. In general systems fall into different universality classes, so that systems within each class have the same behaviour. For the present discussion, one says that all 'unimodal' (smooth, concave downwards, with a single hump) maps belong to the same universality class, that is bifurcate at a rate leading to the universal Feigenbaum constant . The actual proof of this statement is quite involved, but briefly stated, it uses the concept of the renormalisation group that was developed to deal with critical phenomena in statistical mechanics. Although Eq.(

    58. Florin Munteanu Homepage
    libertate intreaga); fara decupaje; Petit Larousse (PL). mitchell J.feigenbaum. Matematician si fizician, nascut in 1945, in Philadelphia
    http://www.csc.matco.ro/dictionar.html
    DICTIONAR
    Armonie Prestabilita
    - termen introdus de Leibniz ("Mona dologia", par.56,78) pentru a desemna acordul stabilit dinainte de catre divinitate intre monade (substante spirituale individuale intre care nu exista actiune reciproca). In sens general (la Baumgarten, Kant, Goethe), exprima si unitatea organiza a unei multiplicitati, deci convergenta partilor sau a functiilor unui ansamblu (de exemplu a unei opere de arta) catre producerea unui efect unitar. Automatul celular - clasa larga de modele numerice ce a permis abordarea modelarii Sistemelor Complexe de tipul celor sociale, a viului in general, a interactiunilor neuronale, fiind considerat punct de plecare in proiectarea primelor calculatoare neuronale, a algoritmilor genetici, a modelarii sistemelor ce manifesta criticalitate autoorganizata, a vietii artificiale.
    Bionica - stiinta ce se ocupa cu transpunerea in artefacte a diferitelor fenomene si functii ce caracterizeaza biologicul. Radarul este un exemplu de "copiere" tehnica a "vederii" liliacului. Intreg (lat) 1. Din care nu lipseste nimic; tot, complet; nestirbit, neatins, intact. 2. mat.; despre numere; Care se poate obtine prin adunarea repetata a lui UNU cu el insusi; (a intregi / a completa); (intregime / ansamblul elementelor care constituie un tot)- MDE-1972

    59. FEIGENBAUM
    Translate this page Dieses Diagramm heißt übrigens nicht feigenbaum, weil es so aussieht, sondernwurde benannt nach dem Physiker mitchell feigenbaum (1945-), der sich in den
    http://www.beepworld.de/members19/baum-horoskop/feigenbaum.htm
    FEIGENBAUM
    Zurück
    Feigenbaum 14. 6. - 23. 6. Die Empfindsamkeit
    bitte beachten sie die LINK Hinweise von mir bitte geben sie Ihre Stimme ab Zauberblume - Danke für den Klick und die Bewertung
    Feigenbaum Danke für die Veröffentlichung
    Ficus carica
    Der Feigenbaum ist mit unseren Zimmergummibäumen verwandt. Im Gegensatz zu ihnen wirft er aber sein Laub im Herbst ab und muß deshalb nicht unbedingt hell überwintert werden – ein Vorteil für Kübelpflanzenfreunde mit Platzproblemen. Der Reiz dieses attraktiven Strauches wird durch seine Früchte noch erhöht. Allerdings sollte man nicht auf eine reiche Ernte spekulieren, denn von den sich im Herbst bildenden kleinen Feigen übersteht nur ein Teil die Überwinterung und reift im kommenden Sommer tatsächlich aus. Die Feige ist eine uralte Kulturpflanze. Bereits im Altertum nutzte man ihre Früchte. Ihre unprüngliche Heimat liegt vermutlich im Mittelmeerraum und Vorderasien, genau läßt sich das nicht mehr zurückverfolgen. Heute findet man sie aber auch in nahezu allen wärmeren Regionen der Erde. Wilde und verwilderte Bäume kann man häufiger in Italien oder Griechenland entdecken.
    Erde:
    Sie sollte durchlässig und nicht zu torfhaltig sein, z. B. Einheitserde zu einem Drittel mit feinem Kies vermischt.

    60. Publications
    .ps .ps.gz; J. mitchell, A. Ramanathan, A Ernest Miller and Joan feigenbaum Taking the Copy Out of Copyright , in Proceedings of the 2001 ACM Workshop on
    http://www.cis.upenn.edu/spyce/publications.html
    Publications
    Protocol Analysis
    • N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov.

    • Multiset Rewriting and the Complexity of Bounded Security Protocols
      submitted for publication. [ .ps .ps.gz .pdf
    • J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague

    • A probabilistic polynomial-time calculus for the analysis of cryptographic protocols
      submitted for publication. [ .ps
    • F. Butler, I. Cervesato, A. Jaggard, and A. Scedrov
      A formal analysis of some properties of Kerberos 5 using MSR
      In: S. Schneider, ed., 15-th IEEE Computer Security Foundations Workshop , Cape Breton, Nova Scotia, Canada, June, 2002, IEEE Computer Society Press, pp. 175-190. [ .ps .ps.gz
    • J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague
      A probabilistic polynomial-time calculus for analysis of cryptographic protocols
      In: S. Brookes, M. Mislove, eds., 17-th Annual Conference on the Mathematical Foundations of Programming Semantics, Arhus, Denmark, May, 2001, Electronic Notes in Theoretical Computer Science, Volume 45 (2001) [ .ps
    Digital Rights Management
    • Ernest Miller and Joan Feigenbaum

    • in Proceedings of the 2001 ACM Workshop on Security and Privacy in Digital Rights Management. vol. 2320, Lecture Notes in Computer Science, Springer, Berlin, 2002, pages 233-244. [

    A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

    Page 3     41-60 of 92    Back | 1  | 2  | 3  | 4  | 5  | Next 20

    free hit counter