Geometry.Net - the online learning center
Home  - Scientists - Feigenbaum Mitchell

e99.com Bookstore
  
Images 
Newsgroups
Page 4     61-80 of 92    Back | 1  | 2  | 3  | 4  | 5  | Next 20
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

         Feigenbaum Mitchell:     more detail
  1. Chaos: The New Science (Nobel Conference XXVI) by John Holte, James Gleick, et all 1993-03-19
  2. Current conservation and double spectral representations for scattering of vector particles by Mitchell J Feigenbaum, 1971

61. The MacArthur Fellows Program
Bernstein, Shelly C. Bickel, Peter J. Drayton, William Drell, Sidney feigenbaum,mitchell J. Freedman, Michael H. Hames, Curtis G. Heath, Shirley Brice Howland
http://www.macfound.org/programs/fel/complete_list_6.htm
The MacArthur Fellows Program Overview Frequently Asked Questions Program and Area Directors 2002 MacArthur Fellows Announced ... 2002 MacArthur Fellows Gallery Complete List of MacArthur Fellows 1981-2002 A-F
G-K

L-R

S-Z
...
by Class

2002 Fellows Full Biographies Bonnie Bassler
Ann Blair

Katherine Boo

Paul Ginsparg
...
Colson Whitehead

Complete List of MacArthur Fellows As of September 24, 2002, 635 Fellows have been named. MacArthur Fellows 1981 - 2002: Listing By Field June 1981: 21 Fellows December 1981: 20 Fellows Ammons, A. R. Brodsky, Joseph Chudnovsky, Gregory V. Coles, Robert Errington, Shelly Gates, Henry Louis, Jr. Ghiselin, Michael Gould, Stephen Jay Graham, Ian Imbrie, John Lewis, Elma McPherson, James Mottahedeh, Roy P. Osheroff, Douglas D. Root-Bernstein, Robert Rosen, Lawrence Schorske, Carl E. Silko, Leslie Marmon Walcott, Derek Warren, Robert Penn Wolfram, Stephen

62. The MacArthur Fellows Program
Physics Carlson, Shawn Edwards, Helen T. feigenbaum, mitchell J. Friedan, DanielH. Gross, David Hau, Lene Hopfield, John J. Libchaber, Albert J. Mabuchi
http://www.macfound.org/programs/fel/complete_list_5.htm
The MacArthur Fellows Program Overview Frequently Asked Questions Program and Area Directors 2002 MacArthur Fellows Announced ... 2002 MacArthur Fellows Gallery Complete List of MacArthur Fellows 1981-2002 A-F
G-K

L-R

S-Z
...
by Class

2002 Fellows Full Biographies Bonnie Bassler
Ann Blair

Katherine Boo

Paul Ginsparg
...
Colson Whitehead

Complete List of MacArthur Fellows As of September 24, 2002, 635 Fellows have been named. MacArthur Fellows 1981 - 2002: Listing By Field The Arts Architecture Diller, Elizabeth Mockbee, Samuel Scofidio, Ricardo Choreography and Dance Blunden, Jeraldyne Brown, Trisha Cunningham, Merce Jones, Bill T. Lerman, Liz Marshall, Susan Mitchell, Arthur Morris, Mark Otake, Eiko and Koma Streb, Elizabeth Taylor, Paul Tharp, Twyla Crafts and Design Bigelow, Charles A. Bing, Xu Maloof, Sam Van Vliet, Claire Wilson, Adrian Fiction Abish, Walter Barrett, Andrea Butler, Octavia Cantor, Jay

63. DBLP Ninghui Li
5, EE, Ninghui Li, William H. Winsborough, John C. mitchell Distributed credential 4,EE, Ninghui Li, Joan feigenbaum Nonmonotonicity, User Interfaces, and Risk
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Ninghui.html

64. Mathematicians
Lorenz, Edward. 1919 Robinson, Julia feigenbaum, mitchell. This list was compiledby Troy Henke and used with permission. See Troy’s list of Math Classics.
http://members.aol.com/PennyGar/mathematicians.html
B.C. 600 Thales 569 Pythagoras 495 Zeno 470 Hippocrates 428 Plato 408 Eudoxus 384 Aristotle 330 Euclid 250 Eratosthenes 287 Archimedes 262 Apollonius Hypsicles 180 Hipparchus Marinus A.D. 100 Nichomachus 100 Diophantus 100 Ptolemy 370 Hypatia 825 al-Khowârizmî 1048 Khayyam, Omar 1114 Bhaskara 1180 Fibonacci, Leonardo 1201 al-Din, Nasir (al-Tusi) 1300 Shije, Zhu 1430 al-Kashi, Jemshid 1452 da Vinci, Leonardo 1465 Ferro, Scipio 1473 Copernicus, Nicolaus 1499 Tartaglia (Nicolo Fontana) 1501 Cardano, Girolamo 1540 Viète, Fran?ois 1548 Stevin, Simon 1546 Brahe, Tycho 1550 Napier, John 1560 Harriot, Thomas 1564 Galilei, Galileo 1571 Kepler, Johannes 1574 Oughtred, William 1591 Desargues, Gérard 1596 Descartes, René 1598 Cavalieri, Bonaventura 1601 Fermat, Pierre de 1616 Wallis, John 1623 Pascal, Blaise 1629 Huygens, Christian 1630 Barrow, Isaac 1638 Gregory, James

65. ThinkQuest Library Of Entries
Full Blown Chaos. feigenbaum Applet. The following applet representsthe research of mitchell feigenbaum. It is obvious that iterating
http://library.thinkquest.org/26688/feigenbaum.html
Welcome to the ThinkQuest Internet Challenge of Entries
The web site you have requested, Fractals and Chaos , is one of over 4000 student created entries in our Library. Before using our Library, please be sure that you have read and agreed to our To learn more about ThinkQuest. You can browse other ThinkQuest Library Entries To proceed to Fractals and Chaos click here Back to the Previous Page The Site you have Requested ...
Fractals and Chaos
click here to view this site
A ThinkQuest Internet Challenge 1999 Entry
Click image for the Site Languages : Site Desciption Its goal is to educate high school students (with backgrounds in algebra) about chaos theory and fractals, with a conceptual overview, historical references, and also some fractal math.
Students James East Brunswick High School
NJ, United States Krishnan East Brunswick High School
NJ, United States Seung Woo East Brunswick High School
NJ, United States Coaches Tom East Brunswick Board of Education
NJ, United States

66. Feigenbaum
Translate this page Abbildung * und *). Es wird seinem Entdecker mitchell J. feigenbaumzur Ehre feigenbaumdiagramm oder kurz feigenbaum genannt.
http://www.schloesinger.de/deutsch/mandelbrot-_u_juliamengen/node16.html

Mandelbrotmengen
Die Verhulst-Funktion Vorherige Seite: Der Fall Inhalt
Feigenbaum
Abbildung: Feigenbaumdiagramm Das Feigenbaumdiagramm stellt den realen Grenzwert des Orbits in Abhängigkeit von dar . Dabei wird auf der x-Achse und die Orbitwerte auf der y-Achse aufgetragen. Der Computer erzeugt das Diagramm dadurch, dass er für jedes dargestellte (und einen konstanten Startwert ) die Funktion iteriert. Nur die letzten berechneten Werte des Orbits werden in dem Diagramm dargestellt. Die anfänglichen Orbit-Werte werden nicht gezeichnet, da sich das System erst ,,einschwingen`` muss (vgl. Abbildung und ). Es wird seinem Entdecker Mitchell J. Feigenbaum zur Ehre Feigenbaumdiagramm oder kurz Feigenbaum genannt. Auffällig sind die Gabelungen im Diagramm, sie werden auch als Bifurkation (lat. furka = Heugabel) oder Periodenverdopplung bezeichnet. Die Bezeichnung Periodenverdopplung läßt am deutlichsten die mathematische Bedeutung dieser Gabelung erkennen: Nach der Gabelung verlaufen doppelt soviele Äste wie vor der Gabelung, d.h. die Periode der Fixpunkte hat sich verdoppelt. Daher finden sich doppelt soviele Werte wie zuvor im Diagramm. Es gibt aber auch für die man die Anzahl der Äste auch bei stärkster Vergrößerung nicht ablesen kann. Hier herrscht Chaos.

67. Feigenbaum Und Lorentz Diagramm
Translate this page Mitte der Siebziger Jahre des letzten Jahrhunderts erforschte mitchell J. Feigenbaumdie Eigenschaften von quadratischen Funktionen bei der Iteration.
http://www.ostium.ch/fraktale/feigenbaum.html
Feigenbaum und Lorentz Diagramm
Bild 4.1
Bild 4.2
Bild 4.3
Mitte der Siebziger Jahre des letzten Jahrhunderts erforschte Mitchell J. Feigenbaum die Eigenschaften von quadratischen Funktionen bei der Iteration. Als Basis diente die Populationsgleichung P n+1 (x) = a * P n (x) * (1 - P n = (0;1) und a = [1;3] strebt P n n n gar nicht und zeigt ein unvorhersehbares Verhalten.
x(n+1) = x(n) - y(n)*dt - z(n)*dt
y(n+1) = y(n) + x(n)*dt + a*y(n)*dt
z(n+1) = z(n) + b*dt + x(n)*z(n)*dt - c*z(n)*dt, mit x(0) = y(0) = z(0) = 1
x(n+1) = x(n) - a*x(n)*dt + a*y(n)*dt
y(n+1) = y(n) + b*x(n)*dt - y(n)*dt - z(n)*x(n)*dt
z(n+1) = z(n) - c*z(n)*dt + x(n)*y(n)*dt, mit z(0) = y(0) = z(0) = 1
Home
Nach oben

68. Feigenbaum And Lorentz Diagram (English)
mitchell J. feigenbaum examinated in the 1970s the behaviour of the populationequation P n+1 (x) = a * P n (x) * (1 P n (x)) with iteration.
http://www.ostium.ch/english/fractals/feigenbaum.html
Feigenbaum and Lorentz Diagram
Figure 4.1
Figure 4.2
Figure 4.3
Mitchell J. Feigenbaum examinated in the 1970s the behaviour of the population equation P n+1 (x) = a * P n (x) * (1 - P n (x)) with iteration. For P in (0;1) and a in [1;3] the sequence P n converges to a single limit (Figure 4.1). At a = 3 the graph begins to oscilate. First there are two values, then four, then eight. This is called bifurcation. When a is almost 4 the sequence P n behaves unpredictably and chaoticly.
x(n+1) = x(n) - y(n)*dt - z(n)*dt
y(n+1) = y(n) + x(n)*dt + a*y(n)*dt
z(n+1) = z(n) + b*dt + x(n)*z(n)*dt - c*z(n)*dt, mit x(0) = y(0) = z(0) = 1 Ten years earlier American physicist Edward Lorentz discovered a similar behaviour of his differential equations:
x(n+1) = x(n) - a*x(n)*dt + a*y(n)*dt
y(n+1) = y(n) + b*x(n)*dt - y(n)*dt - z(n)*x(n)*dt
z(n+1) = z(n) - c*z(n)*dt + x(n)*y(n)*dt, mit z(0) = y(0) = z(0) = 1
The formula describes temperature and pressure in the atmoshere. But instead of long-term weather forecasts these equations provided a chaotic bahaviour (Figure 4.3). The consequence for computer-based weather forecast is serious: Even small numerical errors lead to a completely wrong result. The consequence for physics is even worse: Oscilation and chaotic behaviour are inherent properties of this differential equation. Similar equations describe diffusion or other physical processes. Better numerical methods cannot eliminate these effects.

69. Feigenbaum Plot
The complete plot was named after physisist mitchell feigenbaum (USA). If you arenot familier with this example, take a look at Iterating f(x)=ax(1x) .
http://www.ies.co.jp/math/java/misc/chaosb/chaosb.html
Feigenbaum Plot
Introduction
Iterating the quadratic functions f(x)=ax(1-x) is a famous example of chaos. The applet draws all the atractors for the functions of this class. The complete plot was named after physisist Mitchell Feigenbaum (USA). If you are not familier with this example, take a look at "Iterating f(x)=ax(1-x)"
Applets

70. Comparison Of AI Textbooks
mitchell, Simon, Minsky, Pearl, Allen, Nute, feigenbaum, Norvig, Bobrow, Polya,Winston, McCarthy, Charniak, Berliner, Genesereth, Pearl, Quinlan, Reiter, Charniak,Weizenbaum,
http://www.cs.berkeley.edu/~russell/competing.html
Comparison of AI Textbooks
This page lists some of the many books that are meant as introductory AI texts, or as supplementary programming texts that are useful in AI courses. (The official name of each book has "Artificial Intelligence" in the title which we have abbreviated as "AI".) We provide pointers to the home pages and supplementary online code (when they exist). For the "top ten" books (unofficially, according to our own perceptions of popularity, and in no particular order), we list tables of statistics bibliography ; most cited authors ; and topics covered. "Top Ten" AI Texts Authors Publisher Year Code AI: A Modern Approach Russell Norvig Prentice Hall ... Morgan Kaufmann None Computational Intelligence Poole Mackworth Oxford ... AI (3rd ed.) Winston Addison-Wesley 55K Lisp AI (2nd ed.) Knight ... Morgan Kaufmann None AI: Theory and Practice Dean Allen Benjamin Cummings ... Mathematical Methods in AI Bender IEEE Computer Press None The Elements of AI Using Common Lisp Tanimoto Freeman 318K Lisp Other Intro AI Texts Authors Publisher Year Code Introduction to AI Charniak McDermott Addison-Wesley None Principles of AI Nilsson Morgan Kaufmann None Logical Foundations of AI Genesereth Nilsson Morgan Kaufmann None Paradigms of AI Programming Norvig Morgan Kaufmann 481K Lisp The Age of Intelligent Machines Kurzweil MIT Press None AI with Common Lisp Fundamentals Noyes D C Heath Lisp on floppy Formal Concepts in AI Shinghal None AI (Handbook of Perception and Cognition) Boden MIT Press None AI: Machine Implementation of Knowledge and Learning Michie PWS Lisp Texts Authors

71. MURI Project, Papers And Reports
Joan feigenbaum, Sampath Kannan, Moshe Y. Vardi, and Mahesh Viswanathan Patrick Lincoln,John mitchell, and Andre Scedrov Optimization Complexity of Linear
http://theory.stanford.edu/muri/reports/1998-1999/
Home Participants Project Activities Papers and Reports ... Search Astronomical images from archive of Patrick Murphy, National Radio Astronomy Observatory, Charlottesville, VA
Assurance for modular and mobile code Semantic Consistency in Information Exchange ONR '97 MURI Project
Papers and Reports: 1998-1999
Security Protocols Analysis

72. 7th Heaven Episode Guide/Spoilers
Beverley mitchell, Mackenzie Rosman, Adam LaVorgna, George Stults, Geoff Stults,Rachel Blanchard and Nick and Zack Brino also star. Joel feigenbaum directed
http://teentvmovies.about.com/library/bl7heavenepguide.htm
zfp=-1 About Teens TV/Movies for Teens Search in this topic on About on the Web in Products Web Hosting
TV/Movies for Teens
with Rachel Thomas
Your Guide to one of hundreds of sites Home Articles Forums ... Help zmhp('style="color:#fff"') Subjects ESSENTIALS Auditions! Auditions! Complete TV Coverage DVD's, Posters, Books and More ... Subscribe Now Choose One: Subscribe Customer Service Stay up-to-date!
Subscribe to our newsletter.
Advertising Free Credit Report
Free Psychics

Advertisement
"7th Heaven" Episode Guide/Spoilers Show Info Photos
Matt
... Robbie
7th Heaven American Idol (FOX) Angel Birds of Prey Buffy (UPN) Charmed Dawson's Creek Do Over Everwood Family Affair Fastlane (FOX) Firefly (FOX) Girlfriends (UPN) Jamie Kennedy Malcom (FOX) One on One (UPN) Reba Sabrina Smallville That 70's Show (FOX) The Parkers (UPN) What I Like About You Cancelled Shows Episode Guide/Spoilers - 2002-2003 Season Monday, Feb 10, 2003
"I Love Lucy"
KEVIN PROPOSES TO LUCY ON VALENTINE’S DAY/BO DEREK (“10”) AND JAZZ LEGEND BOBBY SHORT GUEST-STAR — Kevin (George Stults) goes all out to create the perfect romantic setting for Valentine’s Day, and invites all the Camdens, his brother Ben (Geoff Stults) and their mom (guest-star Bo Derek) to be there with him when he finally gets down on one knee to propose to Lucy (Beverley Mitchell). Meanwhile, Roxanne (Rachel Blanchard) overhears Chandler (Jeremy London) practicing his own proposal to her but she asks him to wait so they won’t steal Lucy and Kevin’s thunder. Jazz great Bobby Short performs. Stephen Collins, Catherine Hicks, David Gallagher, Ashlee Simpson, Mackenzie Rosman, Nikolas and Lorenzo Brino also star. Joel Feigenbaum directed the episode written by creator and executive producer Brenda Hampton.

73. Www.fernsehen.ch - Das Interaktive Und Aktuelle Fernsehprogramm, Sortiert Nach T
Translate this page Stephen Collins, Catherine Hicks, Barry Watson, Jessica Biel, Beverley mitchell,David Gallagher, MacKenzie Rosman Regie Joel J. feigenbaum Figur Eric Camden
http://www.fernsehen.ch/regie/regieoutdet.php3?®IE=Joel J. Feigenbaum&submit=

74. The Feigenbaum Scenario In A Unified Science Of Life And Mind
The surprising answer demonstrated by mitchell feigenbaum in 1975, while he was stilla graduate student in physics, is that both order and chaos are generated
http://home.earthlink.net/~rossi/feigenbaumUnifiedLifeMind.htm
The Feigenbaum Scenario in a Unified Science of Life and Mind Ernest Lawrence Rossi Key words: Feigenbaum scenario, chaos theory, psychoanalysis, mind, behavior In his book on The Creative Cosmos Laszlo (1993) outlined the goal of a unified science of matter, life and mind with these words. "Binding together the observed facts in the simplest possible scheme is a perennial goal of systematic thought in science as well as philosophy. It is also the goal of this study. We attempt to elucidate the unified interactive dynamics (UID) through which the facts investigated in physics, biology, and the sciences of mind and consciousness could be simply and coherently bound together." Laszlo (1993, p. 134) The most interesting current candidates for binding together the basic sciences of physics, biology and psychology are to be found in the so-called "New non-linear dynamics of Chaos Theory." The source of present day investigations of non-linear dynamics can be traced to the turn of the century French mathematician, Henri Poincaré (1905/1952). Poincaré developed his mathematical ideas of non-linear dynamics to deal with deep problems in physics at the same time that Sigmund Freud and Carl Jung were formulating the foundations of psycho-dynamics to deal with deep problems in human psychology. Until now there has been no bridge built between the ideas of the mathematician and the psychologists. A recent investigation of the similarity between the concepts of the non-linear dynamics of Chaos Theory and the psycho-dynamics of depth psychology, however, suggests they may share a common conceptual foundation (Rossi, 1996).

75. Das Feigenbaum-Diagramm
Translate this page Der amerikanische Physiker mitchell feigenbaum beschäftigte sich mit der Frage,welche Aussage sich über die Entwicklung einer Population über viele
http://www.lenne-schule.de/fachb/inf/feige.htm
3. Das Feigenbaum-Diagramm Der amerikanische Physiker Mitchell Feigenbaum beschäftigte sich mit der Frage, welche Aussage sich über die Entwicklung einer Population über viele Zeiträume für steigende Wachstumsfaktoren machen läßt. Dabei ist er von der üblichen Wachstumsgleichung unter der Normierungsbedingung ausgegangen. Dabei ergab sich folgendes Bild: In der Vertikalen wird die Populationsgröße abgetragen. In der Horizontalen - sinnvollerweise erst beginnend bei einem Wachstumsfaktor von 1 (sonst stribt die Population zwingend aus) - wird der Wachstumsfaktor bis kurz unter 4.0 abgetragen. Darüber hinaus ist keine Berechnung möglich.
Bis zu einem Wachstumsfaktor von 3.0 ist ein Zustand genau voraussagbar. Dann gibt es plötzlich zwei Mögliche Zustände. An diesem Punkt, einem Bifurkationspunkt, kam es zu einer Periodenverdoppelung. Hier die ersten Bifurkationspunkte: b b b b b b b Setzt man die Abstände benachbarter Bifurkationspunkte nun ins Verhältnis, läßt sich vermuten, daß dieser Quotient einer Konstanten zustrebt, d.h. daß die Folge der Quotienten einen Grenzwert hat. Tatsächlich ergab sich folgender Wert: zurück

76. Basic Math Theory
Logistic animation. mitchell feigenbaum and the feigenbaum constant. m,increase in m, ratio of consecutive increase. 3, , -. 3.449499, 0.449499,-.
http://www.ukmail.org/~oswin/logistic.html
Logistic function, or restricted and unrestricted growth function
The restricted growth model which, for instance, describes numbers of insects in successive generations. Some scaling is applied so the resulting value is always between and 1. The model for unrestricted growth is very simple:
f(x) = mx
This means that in each generation there will be m times as many flies as in the previous generation. In 1845 P.F Verhulst derived a model of restricted growth by supposing that the factor m decreases as the number x increases. The biggest population that the environment will support is x=1. If there are x insects then 1-x is a measure of the space nature permits for population growth. Consequently we replace m by m(1-x). The model then becomes:
f(x) = mx (1- x) This is known (on this page anyway) as the logistic function. It is of special interest as it exhibits most of the behavior exhibited by more complicated chaotic systems. The fixed points of the logistic function are and 1-1/m. Note that the graph of f(x) is given below and the fixed points can be obtained graphically as the points of intersection of the curve f(x) and the line y = x.
The graph of f(x)=3.3x(1-x). The x and y axis range from to 1.

77. Back In Those Happy, Blissful Days....
physics. An interesting note Dr. Brown's roommate at MIT was Dr.mitchell feigenbaum (famous in those chaos theory circles)! The
http://www.pa.msu.edu/people/kinemuchi/brown.html
Dr. Robert W. Brown taught freshmen physics to my class and many classes in the past and future. He too, like Dr. Eck, had a lot of euphemisms and just fun quotes that made physics entertaining. The physics described below are from excerpts of basic classical mechanics, waves, optics, and modern physics. An interesting note: Dr. Brown's roommate at MIT was Dr. Mitchell Feigenbaum (famous in those chaos theory circles)! The following are all actual things said in class or in his fill-in notes. :-)
A thanks goes out to my pal Lynne, who carefully compiled this list of Doc Brownisms!
Cultural Comments: Bob's Best Handy-Dandy Quotations
100 muddles of Dears in the fall,
100 muddles of Dears,
And if one of those "Dear people" should make sense at all,
99 muddles of Dears in the fall!
1. Ignore table friction for two weeks.
2. Every lousy point on the rope feels the same forces pulling on it.
3. Natural triangularization.
4. Reading, but gently.
5. Infinitely ziggy.
6. Today's lecture is in the nascent stage on note development. 7. Positive, definite guy.

78. Organization Of The Center
The Director of the Center is Professor mitchell feigenbaum; our Administratoris Melanie Lee. Most of the Center is organized into
http://uqbar.rockefeller.edu/organization.html
The Director of the Center is Professor Mitchell Feigenbaum ; our Administrator is Melanie Lee. Most of the Center is organized into five separate laboratories listed below. Several Fellows and long-term visitors not associated with a specific laboratory are also part of the Center. Feigenbaum Laboratory - Mathematical Physics Leibler Laboratory - Analysis of Biological Networks Libchaber Laboratory - Experimental Condensed Matter Physics Magnasco Laboratory - Mathematical Physics Siggia Laboratory - Theoretical Condensed Matter Physics Fellows of the Center
Center for Studies in Physics and Biology

Rockefeller University

1230 York Avenue, New York, NY 10021

79. Feigenbaum
Translate this page feigenbaum. Das wohl einfachste Fraktal ist vom Physiker mitchell feigenbaum,der die Formel bneu=balt*(1-balt)*f für verschiedene f untersuchte.
http://schulen.asn-noe.ac.at/donboscogym/java/Feigenbaum.htm
Feigenbaum
import java.awt.*;import java.awt.event.*;import java.applet.*;// Ein Applet
public class Feigenbaum extends Applet // Klassenname
b=b*(1-b)*f; // Die Rechnung
c=new Color(t,255-t,t); g.setColor(c); // Farbe setzen
g.drawLine(z,y,z,y); // nur ein Punkt

80. Untitled
32. feigenbaum,mitchell J.“Quantitative Universality for a Class of Nonlinear Transformations.” Jour. Statistical Phys. 19(1978)25. 33.
http://www.phil.pku.edu.cn/resguide/tmirror/tb06.htm

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Page 4     61-80 of 92    Back | 1  | 2  | 3  | 4  | 5  | Next 20

free hit counter