Encyclopædia Britannica Search Tips. Your search scipione del ferro. Log In or Subscribe Now. Expand yoursearch on scipione del ferro with these databases Journals and magazines. http://search.britannica.com/search?query=Scipione del Ferro
Tartaglia Et Cardan Translate this page Remarque scipione del ferro (1465-1 526) fut un précurseur de Tartagliadans ce domaine mais les papiers de celui-ci sont perdus. Cardan. http://math93.free.fr/Tartaglia-Cardan.htm
Extractions: et Cardan (Pavie, 1501-Rome, 1576) Home Les mathématiciens MATHÉ MATICIENS ITALIENS DU 16e SIÈCLE Les savants italiens du 16° siècle se distinguèrent surtout en algèbre élémentaire. Tartaglia. Nicolo Fontana était surnommé Tartaglia (le bègue) parce que, gravement blessé par l'épée d'un cavalier français, entré dans la grande église de Brescia le 19 février 1512 dans laquelle il se réfugiait avec sa mère, il lui en restait des difficultés d'élocution. (Les troupes françaises étaient menées par le terrible Gaston de Foix, surnommé "foudre d'Italie".) Niccolo qui avait alors 12 ans fut retrouvé la mâchoire fracassée. Aidé seulement par sa mère, veuve depuis 6 ans et trop pauvre pour faire appel à un médecin, il mit très longtemps avant de retrouver la parole. On raconte que le père de Niccolo (Fontana) avait engagé un professeur pour instruire son fils de 6 ans et que celui-ci arrêta les cours (-après la mort de Monsieur Fontana-) alors qu'il ne lui avait enseigné qu'un tiers de l'alphabet (de A à I). Il poursuivit seul son apprentissage. "Tout ce que je sais, je l'ai appris en travaillant sur les uvres d'hommes défunts"
Biography-center - Letter F inventorsAH/ferris.html; ferro, scipione del www-history.mcs.st-and.ac.uk/~history/Mathematicians/ferro.html;Fesler, Wesley E. www http://www.biography-center.com/f.html
Extractions: random biography ! Any language Arabic Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Norwegian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Turkish 430 biographies
Thomas Sauvaget's Academic Homepage An exerpt of the biography of scipione del ferro from the MacTutor history of mathematicsarchive In Ars Magna, Cardan writes with great respect for the http://www.maths.nottingham.ac.uk/personal/pmxtfs/
Extractions: Last autumn term, I did and HGCMOD Contact : An exerpt of the biography of Scipione del Ferro (1465-1526) from the MacTutor history of mathematics archive : In Ars Magna (1545) , Cardan writes with great respect for the achievements of del Ferro (see for example [1]):- Scipione Ferro of Bologna, almost thirty years ago, discovered the solution of the cube and things equal to a number [which in today's notation is the case x + mx = n], a really beautiful and admirable accomplishment. In distinction this discovery surpasses all mortal ingenuity, and all human subtlety. It is truly a gift from heaven, although at the same time a proof of the power of reason, and so illustrious that whoever attains it may believe himself capable of solving any problem
Biographie Cardan Translate this page générale des équations polynomiales de degrés 3 et 4. Il faut leur adjoindreen ce domaine scipione del ferro, 1465-1526, et Rafaele Bombelli, 1526-1573. http://www.ac-bordeaux.fr/Pedagogie/Maths/viemaths/mthacc/cardan.htm
Extractions: e Al Khwarizmi Ars Magna C'est dans l' Ars Magna nombres complexes (-15) et 5 - (-15), et constate que leur produit et leur somme sont tous deux des nombres positifs ordinaires : 40 et 10. Il qualifie lui-même ces considérations de "subtiles et inutiles". Toujours dans le contexte des équations du troisième degré, c'est Rafaele Bombelli qui systématisera l'emploi des nombres complexes dans le cas où les trois racines sont réelles. , dans son
Algebra In The Renaissance, Part 2 We discussed scipione del ferro (14651526) who discovered an algebraic method forsolving the cubic equation x ^3 + cx = d. del ferro taught Antonio Fiore. http://public.csusm.edu/public/DJBarskyWebs/330CollageOct17.html
Extractions: The discussion was started by talking about art in the Renaissance. The idea of perspective in a painting began to be used in the Renaissance. To achieve realism, objects further away must be made to appear smaller. The painter Leon Battista Alberti (1404-1472) wrote a text on the subject of geometry as it relates to perspective in painting. The main topic centered around solving the "cubic" problem. Several mathematicians of the fifteenth and sixteenth century built upon the work of the Islamic mathematicians. We discussed Scipione del Ferro (1465-1526) who discovered an algebraic method for solving the cubic equation x ^3 + cx = d. Del Ferro taught Antonio Fiore. Niccolo Tartaglia (1499-1557) claimed that he discovered the solution to the cubic equations of the form x^3 + bx^2 = d. Tartaglia told Gerolamo Cardano his secret, however Cardano published the work when he discovered that it had earlier been discovered by del Ferro. It is interesting to follow the long history of one problem. After Dr. Barsky's commentary on the lack of a Nobel prize for mathematics and the mathematician of the day (Vickery), David Trigg began to talk about how the third dimension was represented in the art of this time period. The topics covered consisted of Copernicus and Kepler in Astronomy, the addition of perspective to make two dimensional art appear as three dimensional, Scipione Del Ferro, Antonio Fiore, Niccolo Tartaglia, Gerolamo Cardano and the "Artis Magnae", Libre de Ludo Aleae, Raphael Bombelli, and Simon Stevin.
San Vitale Translate this page Giardino del GUASTO , Largo Respighi. Giardino scipione del ferro , Viascipione del ferro. Giardino MASSARENTI , Vie Massarenti - Rimesse. http://www.comune.bologna.it/iperbole/q_svitale/parchi.htm
Extractions: PARCHI E GIARDINI Parco DELLA MONTAGNOLA , Vie Irnerio - Indipendenza Giardino PIAZZA GARIBALDI , Via Indipendenza Giardino DEL GUASTO , Largo Respighi Giardino SCIPIONE DEL FERRO , Via Scipione del Ferro Giardino MASSARENTI , Vie Massarenti - Rimesse Giardino MASSARENTI-BENTIVOGLI , Vie Massarenti - Bentivogli Giardino MASSARENTI-LIBIA , Vie Massarenti - Libia Giardino BELMELORO , Vie Belmeloro - S. Leonardo Giardino BONDI VIZZANI , Vie Bondi - Vizzani Giardino M.NOVARA , Vie Venturoli - Azzurra Giardino ARCOBALENO , Via dell'Arcobaleno Giardino SPARTACO , Via Spartaco Giardino GHIBERTI , Vie Ghiberti - Curti - Massarenti Giardino MERIDIANA , Vie del Verrocchio - della Robbia Giardino PIOPPETTO MATTEI , vie Mattei - Provaglia Giardino LIBIA , Via Libia Parco TANARA , (Parco di Via Larga) Vie Carpentiere - Weber - Innocenti
Associazioni E Comunità Straniere A Bologna E Provincia Translate this page Moral Via Massarenti, 221/7 40138 Bologna BO. Comunità Cristiano Filippinac/o Villaggio del Fanciullo via scipione del ferro, 4 40138 Bologna BO. http://www.comune.bologna.it/iperbole/immigra/assonews/asstra.htm
I Profili Biografici E - F Translate this page del ferro scipione (1465-1526). Nato e morto a Bologna, ove è statoprofessore all'Università dal 1496 al 1526, scipione del ferro http://www.nonsolomatematica.com/profili3.php
Ecuaciones De Tercer Grado Translate this page bonita. Parece ser que scipione del ferro, un profesor de la Universidadde Bolonia, había encontrado la siguiente fórmula. para http://www.terra.es/personal/jftjft/Algebra/Ecuaciones/Ecuac3.htm
Extractions: Fecha de última actualización: Aunque hay fórmula para resolver las ecuaciones de tercer grado, no merece la pena aprenderse la fórmula, pues hay otros métodos de resolver la ecuación de una forma más cómoda. La historia de la resolución de las ecuaciones de tercer grado es muy bonita. Parece ser que Scipione Del Ferro , un profesor de la Universidad de Bolonia, había encontrado la siguiente fórmula para resolver las ecuaciones cúbicas de la forma x + px = q. Del Ferro mantuvo en secreto esta fórmula, hasta poco antes de morir que se la dijo a su yerno y a uno de sus alumnos llamado Antonio María del Fiore . Años más tarde del Fiore y Niccolo Tartaglia , coincidieron en Venecia y, no se sabe muy bien debido a qué, se retaron matemáticamente: Cada uno planteó al otro 30 problemas. El que perdiese tendría que pagar una comida al vencedor y a tantos amigos del vencedor como problemas hubiese resuelto el vencedor. Los problemas de Tartaglia eran de temas variados, pero los de
Orizzonti Monastici Via scipione del ferro, 4 - 40138 BOLOGNA (Tel. 051/398286). http://www.monaci-benedettini-seregno.com/orizzont.htm
Extractions: L. 10.000 Questa seconda edizione, riveduta ed accresciuta, si caratterizza in particolare per I' aggiunta di una voce su san Mauro tratta da una recente enciclopedia dei santi e per alcune preghiere liturgiche medievali presentate nel testo originale e in traduzione italiana del latinista don Giuliano Palmerini. ...continua... Per ordinazioni: Diffusione a cura di
Orizzonti Monastici N. 26 Via scipione del ferro, 4 - 40138 BOLOGNA (Tel. 051/398286 http://www.monaci-benedettini-seregno.com/oriz_N26.htm
Extractions: Nella stesura di questo piccolo saggio si poteva correre il rischio di ridurre il tutto a una sintesi del noto volume "Paolo VI: discorso ai monaci", edito a Praglia nel 1982. L'autore ha pensato, pertanto , di svolgere il tema, Paolo VI e i monaci, raggruppando testi in tre sezioni che riassumono il progressivo avvicinamento di Montini a un mondo monastico che lo ha sempre affascinato.
Polynomial Equations scipione del ferro (14651526) could solve the depressed cubic , ax 3 + cx +d = 0. However, he kept it a secret, because in that period in Italy, new http://members.fortunecity.com/kokhuitan/polyneqn.html
Extractions: Author (Last) Name Title - Exact ISBN One of the most challenging problems in Mathematics is solving Polynomial Equations. The General Polynomial Equation is of the form: a n x n + a n-1 x n-1 + ... + a x + a where the a 's are Real Numbers and n is a positive integer. If a n is non-zero, we say the Degree of the Polynomial is n The simplest of these equations is the Linear Polynomial Equation ax + b = . The solution of it is known since ancient time to be x = -b/a . The Quadratic Equation, ax + bx + c = , has Degree 2 and it's solution is known to the Babylonians around 2000 BC. By using a method called "completing the Square", we easily obtain the solution When n = 3, we call it a Cubic Equation, ax + bx + cx + d = Omar Khayyam (1048-1131) fully solved these equations using geometric constructions and Conic Sections in his work Treatise on Demonstration of Problems of Algebra . The algebraic solution was a great challenge to mathematicians. In fact, it proved so tough that the Italian mathematician, Luca Paciola (1445-1509), wrote in his work
Mathematician Index Bombelli, Raphael Brahe, Tycho Bruns, Heinrich Callippus Cardano, Girolamo ChrysippusCopernicus, Nicolaus Cotes, Roger del ferro, scipione Descartes, René http://members.fortunecity.com/kokhuitan/mathematicianindex.html
Renässansen. De Allmänna Lösningarnas Upptäckt. De inblandade personerna var scipione del ferro (14651526), Tartaglia (vilketbetyder stammaren, egentligen hette han Niccolò Fontana) (14991557 http://www.mai.liu.se/~pejoh/mathist/node3.html
Articles Dels Estudiants Finalment l'any 1515, el matemàtic scipione del ferro va trobar la soluciópel cas x^3=mx+n, que com veiem no conté factor de segon grau. http://campus.uab.es/~2095048/articles.html
Extractions: Articles fets per estudiants Segurament, si estàs llegint aquesta revista coneixeràs la resolució de l'equació de segon grau, una fórmula mil·lenària que s'obté a partir d'operacions bàsiques (suma, producte, arrel). Tot seguit podeu veure una demostració donada per Euler, més elegant que la primitiva d'Scipione del Ferro: En lloc de treballar a partir de x^3=mx+n, suposarem coneguda la solució x i escriurem x com a suma de dues arrels cúbiques.
Gb Art Time Line Tl_sci1500 1505 scipione del ferro, Ital. mathematician (14651526), solves aform of cubic equation. 1506 Christopher Columbus d. (b. 1451). http://www.ubmail.ubalt.edu/~pfitz/time/tl_sci1500.html
Cardano scipione del ferro (14651526) continues the work that Pacioli hadbegun, but is more optimistic. del ferro is able to solve the http://muskingum.edu/~rdaquila/m370/cardano.html
Extractions: Died: 1576 Milan, Italy The story of Cardano comes in the time of the renaissance. Due to the innovation of the printing press ideas are being shared all over europe. This also includes mathematical ideas. One of the most significant results of Cardano's work is the solution to the general cubic equation [2 p 133]. This is an equation of the form: ax + bx + cx + d = which Cardano was able to find solutions for by extracting certain roots [3]. Before we begin with the story of Cardano, we must explain some history associated with the solution of the cubic. Although the solving of equation goes back to the very roots (no pun) of mathematics this segment of the story begins with Luca Pacioli (1445-1509). Paciloi authored a work Summ de Arithmetica , in which he summerized the solving of both linear and quadratic equations. This was a significant work because the algebra of the day was still in a very primitive form. The symbolism of today is not done at this time, but a written description of equations is used. Pacioli ponders the cubic and decides the problem is too difficult for the mathematics of the day [2 p 134]. Scipione del Ferro (1465-1526) continues the work that Pacioli had begun, but is more optimistic. Del Ferro is able to solve the "depressed cubic", that is a cubic equation that has no square term. The depressed cubic that del Ferro works with is of the form x
Wiskundigen - Pacioli Alleen gedurende de jaren 1501 en 1502 gaf Pacioli korte tijd les aan deuniversiteit van Bologna waar hij met scipione del ferro samenwerkte. http://www.wiskundeweb.nl/Wiskundegeschiedenis/Wiskundigen/Pacioli.html
Extractions: Hij maakte in die tijd kennis met de hertog van Urbino aan wie hij zijn beroemde boek 'Summa de arithmetica, geometria, proportioni et proportionalita' (uit 1494) opdroeg. Dat maakte hem zo beroemd dat hij naar het hof in Milaan werd uitgenodigd om er les te gaan geven in de wiskunde. Hij raakte er nauw bevriend met Leonardo da Vinci. Na de verovering van Milaan door de Franse koning Louis XII, trokken Pacioli en Leonardo naar Florence, waar ze samenwerkten aan het tweede beroemde boek van Pacioli, 'Divina proportione' over de Gulden Snede (1509). In 1501 maakte Pacioli nog kennis met Del Ferro (in Bologna) waarmee hij over het oplossen van derdegraads vergelijkingen sprak. Pacioli hield dit voor onmogelijk, Del Ferro loste later een bepaald type derdegraads vergelijkingen op, zijn methode werd later door Tartaglia herontdekt.
4.La Résolubilité Des équations Par Radicaux Translate this page la quadrature du cercle. En 1500, scipione del ferro donna la formulede résolution de l'équation Niccolo Fontana Tartaglia, http://perso.wanadoo.fr/frederic.gales/Resolution.htm
Extractions: Dans ce préambule historique, nous n'entrerons pas trop dans les détails. Nous nous contenterons donc de suivre les différentes étapes clés dans la résolution des équations algébriques de degré 2, 3, 4 jusqu'à Abel qui démontra l'impossibilité de la résolution par radicaux de l'équation de degré 5. Ceci fait, nous pourrons commencer notre étude. L'histoire des équations polynomiales trouve son origine dans la plus haute antiquité. La résolution des équations quadratiques part alors de deux considérations distinctes : l'une d'ordre géométrique (Égypte), l'autre d'ordre arithmétique (Mésopotamie). Tablette d'argile (2 400 ans av. J.-C.) De nombreux exemples présents dans différentes tablettes babyloniennes montrent que les Babyloniens possédaient des méthodes de résolution des équations quadratiques malgré le fait qu'ils n'utilisaient aucune notation algébrique pour exprimer leurs solutions. Tous les problèmes étaient numériques (numération en base 60) et exprimés en mots et en phrases. Dans une tablette de 1800 environ avant J.C. (problème 7 de la tablette BM13901) on trouve l'équation suivante "Jai additionné sept fois le côté de mon carré et onze fois la surface : 6°15"